TippingPoint
Security Management System (SMS)
H3 and H3 XL
ProLiant Gen9 RAID Guide

Version: 16.9.1
Trend Micro Incorporated ("Trend Micro") makes no warranty of any kind with regard to this material, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. Trend Micro shall not be liable for errors contained herein or for incidental or consequential damages in connection with the furnishing, performance, or use of this material.

This document contains proprietary information, which is protected by copyright. No part of this document may be photocopied, reproduced, or translated into another language without the prior written consent of Trend Micro. The information is provided “as is” without warranty of any kind and is subject to change without notice. The only warranties for Trend Micro products and services are set forth in the express warranty statements accompanying such products and services. Nothing herein should be construed as constituting an additional warranty. Trend Micro shall not be liable for technical or editorial errors or omissions contained herein.
TABLE OF CONTENTS

1. Getting started .. 4
2. What’s new with the SMS .. 4
 2.1. RAID Levels ... 4
3. TippingPoint Security Management System Specifications .. 5
4. Drive procedures .. 6
 4.1. Identifying the status of an HP SmartDrive .. 6
 4.2. How do I know if a drive has failed? .. 7
 4.3. Effects of a hard drive failure on logical drives .. 7
 4.4. Replacing drives ... 7
 4.5. Automatic data recovery (rebuild) ... 8
 4.6. Time required for a rebuild ... 8
 4.7. Abnormal termination of a rebuild .. 9
5. HP Integrated Lights Out (iLO) ... 10
 5.1. Overview ... 10
 5.2. How should iLO connect to the network? .. 10
 5.3. How will iLO acquire an IP address? ... 10
 5.4. What access security is required, and what user accounts and privileges are needed? 11
6. Additional Resources ... 11
 6.1. Integrated Lights Out (iLO) .. 11
 6.2. HP Smart Array Controller .. 11

LIST OF TABLES

Table 3-1: SMS Appliance Specifications .. 5
Table 4-1: HP SmartDrive LED Indicators .. 6
Table 4-2: Abnormal termination indications ... 9
1. Getting started

This document includes feature, installation, and configuration information about the HP SmartDrive shipping with the Security Management System (SMS) H3 and H3 XL appliance and it is intended for the person who installs, administers, and troubleshoots servers and storage systems.

2. What’s new with the SMS

The Security management System (SMS) is now being delivered on a new hardware platform which are part of the HP ProLiant DL Gen9 family of servers;

- The SMS H3 is based on the HP-DL360-G9 rack server and is deployed with two 600GB drives arranged in a RAID 1 (mirrored) configuration for a total of 600GB available storage.

- The SMS H3 XL is based on the HP-DL380-G9 rack servers and is deployed with six 600GB drives arranged in a RAID 1+0 (mirrored with stripe) configuration for a total of 1.8TB available storage.

2.1. RAID Levels

RAID 1 consists of an exact copy (or mirror) of a set of data on two or more disks; a classic RAID 1 mirrored pair contains two disks. This layout is useful when “read performance” or reliability is more important than the resulting data storage capacity; such an array can only be as big as the smallest member disk.

RAID 1+0, also called RAID 10, combines disk mirroring and disk striping to protect data. A RAID 10 configuration requires a minimum of four disks, and stripes data across mirrored pairs. As long as one disk in each mirrored pair is functional, data can be retrieved. If two disks in the same mirrored pair fail, all data will be lost because there is no parity in the striped sets.
3. **TippingPoint Security Management System Specifications**

Table 3-1: SMS Appliance Specifications

<table>
<thead>
<tr>
<th>Physical appliance specifications</th>
<th>Security Management System H3 Appliance (C1J59A)</th>
<th>Security Management System H3 XL Appliance (C1J60A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical characteristics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dimensions</td>
<td>43.47 x 69.85 x 4.32 cm (17.11 x 27.5 x 1.7 in.)</td>
<td>44.55 x 67.94 x 8.73 cm (17.54 x 26.75 x 3.44 in.)</td>
</tr>
<tr>
<td>Form factor</td>
<td>1U rack-mount</td>
<td>2U rack-mount</td>
</tr>
<tr>
<td>Weight</td>
<td>16.78 kg (36.99 lb)</td>
<td>23.6 kg (51.5 lb)</td>
</tr>
<tr>
<td>Memory, processor, and storage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2x Intel® Xeon® E5-2620 v3 (2.4 GHz/6-core/15 MB/85 W)</td>
<td>2x Intel Xeon E5-2690 v3 (2.6 GHz/12-core/30 MB/135 W)</td>
<td></td>
</tr>
<tr>
<td>64 GB RAM</td>
<td>96 GB RAM</td>
<td></td>
</tr>
<tr>
<td>600 GB (2 x 600 GB disks, RAID 1)</td>
<td>1.8 TB storage (6 x 600 GB, RAID 1+0)</td>
<td></td>
</tr>
<tr>
<td>Operating temperature</td>
<td>10 to 35°C (50 to 95°F)</td>
<td>10 to 35°C (50 to 95°F)</td>
</tr>
<tr>
<td>Electrical characteristics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voltage</td>
<td>100 to 120 VAC, 200 to 240 VAC</td>
<td>100 to 120 VAC, 200 to 240 VAC</td>
</tr>
<tr>
<td>Frequency</td>
<td>50/60 Hz</td>
<td>50/60 Hz</td>
</tr>
<tr>
<td>Current</td>
<td>2.78 A (100 V) to 1.15 A (240 V)</td>
<td>4.58 A (100 V) to 1.88 A (240 V)</td>
</tr>
<tr>
<td>Power supply</td>
<td>Redundant 500 W (Hot swappable)</td>
<td>Redundant 800 W (Hot swappable)</td>
</tr>
<tr>
<td>Capacity</td>
<td>Licensed for managed 25 devices (expandable)</td>
<td>Licensed for 500 managed devices</td>
</tr>
<tr>
<td></td>
<td>200 million historical events</td>
<td>500 million historical events</td>
</tr>
<tr>
<td></td>
<td>Provides additional processing and storage</td>
<td>Provides additional processing and storage</td>
</tr>
<tr>
<td></td>
<td>recommended for deployments larger than 150</td>
<td>recommended for deployments larger than 150</td>
</tr>
<tr>
<td></td>
<td>devices</td>
<td>devices</td>
</tr>
<tr>
<td>Drive Controller</td>
<td>HP Smart Array P440ar/2GB FBWC 12Gb 1-port Int SAS</td>
<td>HP Smart Array P440ar/2GB FBWC 12Gb 1-port Int SAS</td>
</tr>
<tr>
<td>Lights-out management support</td>
<td>HP iLO 4 support with a dedicated 10/100/1000BASE-T RJ45 iLO port</td>
<td>HP iLO 4 support with a dedicated 10/100/1000BASE-T RJ45 iLO port</td>
</tr>
</tbody>
</table>
4. Drive procedures

4.1. Identifying the status of an HP SmartDrive

HP SmartDrives are the latest HP drive technology and are only supported on the new Gen9 SMS servers. Identify an HP SmartDrive by its carrier, shown in the following illustration. When a drive is configured as a part of an array and connected to a powered-up controller, the drive LEDs indicate the condition of the drive.

![HP SmartDrive Carrier Illustration]

<table>
<thead>
<tr>
<th>Item</th>
<th>LED</th>
<th>Status</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Locate Backlight</td>
<td>Solid blue</td>
<td>The drive is being identified by a host application.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Flashing blue</td>
<td>The drive carrier firmware is being updated or requires an update.</td>
</tr>
<tr>
<td>2</td>
<td>Activity Ring</td>
<td>Rotating green</td>
<td>Drive activity</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Off</td>
<td>No drive activity</td>
</tr>
<tr>
<td>3</td>
<td>Hard Drive Indicator</td>
<td>1) Off</td>
<td>The drive is not configured by a RAID controller.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2) Solid green</td>
<td>The drive is a member of one or more logical drives.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3) Flashing green</td>
<td>The drive is rebuilding or performing a RAID migration, strip size migration, capacity expansion, or logical drive extension, or is erasing.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4) Flashing amber/green</td>
<td>The drive is a member of one or more logical drives and predicts the drive will fail.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5) Flashing amber</td>
<td>The drive is not configured and predicts the drive will fail.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6) Solid amber</td>
<td>The drive has failed.</td>
</tr>
<tr>
<td>4</td>
<td>Do not remove</td>
<td>Solid white</td>
<td>Do not remove the drive. Removing the drive causes one or more of the logical drives to fail.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Off</td>
<td>Removing the drive does not cause a logical drive to fail.</td>
</tr>
</tbody>
</table>
Table 4-1: HP SmartDrive LED Indicators

<table>
<thead>
<tr>
<th>Item</th>
<th>LED</th>
<th>Status</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Handle</td>
<td>Pull</td>
<td>Drive cage handle comes out when eject button is pressed.</td>
</tr>
</tbody>
</table>

*Note: The blue Locate LED is behind the release lever and is visible when illuminated.

4.2. How do I know if a drive has failed?

- If the drive status LED illuminates solid amber, flashing amber or flashing amber/green
- If the SMS server is rebooted, a POST message lists failed drives when the system is restarted, as long as the controller detects at least one functional drive.
- Access the [iLO interface](#) to view drive status

4.3. Effects of a hard drive failure on logical drives

When a drive fails, all logical drives that are in the same array are affected. Each logical drive in an array might be using a different fault-tolerance method, so each logical drive can be affected differently.

- The SMS H3 with RAID 1 will continue to function if one of the drives in the mirrored set fails. Just RMA the failed drive and replace to re-establish the mirror. If on the off chance that both drives fail, call customer support to request an RMA for the appliance.

- The SMS H3 XL with RAID 1+0 will continue to function even if all three drives from the mirror set fail. Just RMA the failed drives and replace to re-establish the mirror.

4.4. Replacing drives

The most common reason for replacing a drive is that it has failed.

For systems that support hot-pluggable drives, if you replace a failed drive that belongs to a fault-tolerant configuration while the system power is on, all drive activity in the array pauses for 1 or 2 seconds while the new drive is initializing. When the drive is ready, data recovery to the replacement drive begins automatically.

If you replace a drive belonging to a fault-tolerant configuration while the system power is off, a POST message appears when the system is next powered up. This message prompts you to press the F1 key to start automatic data recovery. If you do not enable automatic data recovery, the logical volume remains in a ready-to-recover condition and the same POST message appears whenever the system is restarted.
4.5. Automatic data recovery (rebuild)

When you replace a drive in an array, the controller uses the fault-tolerance information on the remaining drives in the array to reconstruct the missing data (the data that was originally on the replaced drive) and then write the data to the replacement drive. This process is called automatic data recovery or rebuild. If fault tolerance is compromised, the controller cannot reconstruct the data, and the data is likely lost permanently.

If another drive in the array fails while fault tolerance is unavailable during rebuild, a fatal system error can occur, and all data on the array can be lost. However, failure of another drive does not always lead to a fatal system error in the following exceptional cases:

- Failure after activation of a spare drive
- Failure of a drive that is not mirrored to any other failed drives in the following configurations:
 - RAID 1
 - RAID 1+0

When automatic data recovery has finished, the drive status LED changes from flashing green to solid green.

If the drive status LED on the replacement drive changes to flashing or solid amber, the rebuild process has terminated abnormally.

4.6. Time required for a rebuild

The time required for a rebuild varies, depending on several factors:

- The priority that the rebuild is given over normal I/O operations (you can change the priority setting by using HP SSA)
- The amount of I/O activity during the rebuild operation
- The average bandwidth capability (MBps) of the drives
- The availability of drive cache
- The brand, model, and age of the drives
- The amount of unused capacity on the drives
- The strip size of the logical volume

CAUTION: Because data rebuild time ranges from 200 to 520 GB/h, the system could be unprotected against drive failure for an extended period during data recovery or a drive capacity upgrade. When possible, perform rebuild operations only during periods of minimal system activity.
4.7. Abnormal termination of a rebuild

If the activity LED on the replacement drive permanently ceases to be illuminated even while other drives in the array are active, the rebuild process has terminated abnormally. The following table indicates the three possible causes of abnormal termination of a rebuild.

<table>
<thead>
<tr>
<th>Observation</th>
<th>Cause of rebuild termination</th>
</tr>
</thead>
<tbody>
<tr>
<td>None of the drives in the array have an illuminated amber drive status LED.</td>
<td>One of the drives in the array has experienced an uncorrectable read error.</td>
</tr>
<tr>
<td>The replacement drive has an illuminated amber drive status LED.</td>
<td>The replacement drive has failed.</td>
</tr>
<tr>
<td>One of the other drives in the array has an illuminated amber drive status LED.</td>
<td>The drive with the illuminated amber LED has now failed.</td>
</tr>
</tbody>
</table>
5. **HP Integrated Lights Out (iLO)**

5.1. **Overview**

The HP iLO subsystem is a standard component of HP ProLiant servers that simplifies initial server setup, server health monitoring, power and thermal optimization, and remote server administration. The HP iLO subsystem includes an intelligent microprocessor, secure memory, and a dedicated network interface. This design makes HP iLO independent of the host server and its operating system.

HP iLO enables and manages the Active Health System and also features Agentless Management. HP iLO monitors all key internal subsystems. When enabled, SNMP alerts are sent directly by HP iLO, regardless of the host operating system or whether a host operating system is installed. Embedded remote support software is available on HP ProLiant Gen8 and Gen9 servers with iLO 4, regardless of the operating system software and without installing OS agents on the server.

5.2. **How should iLO connect to the network?**

Typically, iLO is connected to the network through one of the following:

- **A corporate network** that both the NIC and the iLO port are connected to. This connection enables access to iLO from anywhere on the network and reduces the amount of networking hardware and infrastructure required to support iLO. However, on a corporate network, traffic can hinder iLO performance.

- **A dedicated management network** with the iLO port on a separate network. A separate network improves performance and security because you can physically control which workstations are connected to the network. A separate network also provides redundant access to the server if a hardware failure occurs on the corporate network. In this configuration, iLO cannot be accessed directly from the corporate network.

5.3. **How will iLO acquire an IP address?**

To access iLO after connecting it to the network, the iLO management processor must acquire an IP address and subnet mask by using either a dynamic or static process.

- **A dynamic IP address** is set by default. iLO obtains the IP address and subnet mask from DNS or DHCP servers. This method is the simplest.

- **A static IP address** is used if DNS or DHCP servers are not available on the network. A static IP address can be configured by using iLO ROM-Based Setup Utility (RBSU) or the iLO 4 Configuration Utility.
5.4. What access security is required, and what user accounts and privileges are needed?

iLO provides several options to control user access. Use one of the following methods to prevent unauthorized access:

- **Local accounts** - Up to 12 user accounts can be stored in iLO. This is ideal for small environments such as labs and small-sized or medium-sized businesses.

- **Directory services** - Use the corporate directory to manage iLO user access. This is ideal for environments with a large number of users. If you plan to use directory services, consider enabling at least one local administrator account for alternate access.

6. Additional Resources

6.1. Integrated Lights Out (iLO)

Server remote management with HP Integrated Lights Out (iLO)

iLO 4 User Guide

6.2. Smart Array Controller

Smart Array Controller for Gen9 Servers