Trend Micro Incorporated reserves the right to make changes to this document and to the products described herein without notice. Before installing and using the software, please review the readme files, release notes and the latest version of the Getting Started Guide, which are available from Trend Micro’s Web site at:

http://www.trendmicro.com/download/documentation/

NOTE: A license to the Trend Micro Software usually includes the right to product updates, pattern file updates, and basic technical support for one (1) year from the date of purchase only. Maintenance must be renewed on an annual basis at Trend Micro’s then-current Maintenance fees.

Trend Micro, the Trend Micro t-ball logo, InterScan, TrendLabs, Trend Micro Control Manager, and Trend Micro Damage Cleanup Services are trademarks or registered trademarks of Trend Micro, Incorporated. All other product or company names may be trademarks or registered trademarks of their owners.

Copyright© 1998-2007 Trend Micro Incorporated. All rights reserved. No part of this publication may be reproduced, photocopied, stored in a retrieval system, or transmitted without the express prior written consent of Trend Micro Incorporated.

Document Part No. IHEM33255/70531

Release Date: July 2007

Protected by U.S. Patent No. 5,951,698
The Administrator’s Guide for Trend Micro is intended to provide in-depth information about the main features of the software. You should read through it prior to installing or using the software.

For technical support, please refer to the Technical Support and Troubleshooting chapter for information and contact details. Detailed information about how to use specific features within the software are available in the online help file and online Knowledge Base at Trend Micro’s Web site.

Trend Micro is always seeking to improve its documentation. If you have questions, comments, or suggestions about this or any Trend Micro documents, please contact us at docs@trendmicro.com. Your feedback is always welcome. Please evaluate this documentation on the following site:

http://www.trendmicro.com/download/documentation/rating.asp
Chapter 3: HTTP Configuration

Enabling the HTTP Traffic Flow .. 32
Specifying a Proxy Configuration and Related Settings 32
Proxy Configurations ... 33
Proxy-related Settings .. 41
Network Configuration and Load Handling 43
Configuring an IWSA Server Farm .. 43
Configuring Access Control Settings ... 44
Identifying Clients and Servers .. 44
Client IP .. 45
Server IP Approved List .. 46
Destination Port Restrictions ... 48
HTTPS Ports ... 50
Setting Up IWSA ICAP .. 52
Setting up an ICAP 1.0-compliant Cache Server 52
Configuring Virus-scanning Server Clusters 58
Flushing Existing Cached Content from the Appliance 59
Enabling “X-Virus-ID” and “X-Infection-Found” Headers 60

Chapter 4: Policies and User Identification Method

How Policies Work .. 64
Default Global and Guest Policies .. 65
About the Guest Policy .. 65
Enabling the Guest Port .. 66
Deploying Policies .. 66
Configuring the User Identification Method 66
IP Address ... 67
Host Name ... 69
User/Group Name Via Proxy Authorization 71
Configuring the Scope of a Policy ... 78
Login Accounts ... 82
Chapter 5: Configuring HTTP Scanning

Enabling HTTP Scanning and Applets and ActiveX Security86
HTTP Scanning Performance Considerations87
Creating and Modifying HTTP Virus Scanning Policies88
Specifying Web Reputation Rules ...90
Web Reputation Settings ..91
Clearing the URL Cache ...93
HTTP Virus Scanning Rules ..94
Spyware and Grayware Scanning Rules104
Setting the Scan Action for Viruses ...106
IntelliTunnel Security ..108
Protocols Used in Instant Messaging and Authentication
Connections ...109
Editing an IntelliTunnel Policy ...110
Creating a New IntelliTunnel Policy110
Java Applet and ActiveX Security ..111
How Applets and ActiveX Security Works112
Enabling Applet/ActiveX Security ...115
Adding and Modifying Applet/ActiveX Scanning Policies115
Configuring Java Applet Security Rules117
Applet and ActiveX Settings ..125
Java Applet Signature Validation ..125
Adding Certificates for Applet Signature Verification126
Applet Re-signing ..127
ActiveX Signature Validation ...128
Managing Digital Certificates for Applet Processing129
Client-side Applet Security Notifications133

Chapter 6: Access Quotas and URL Access Control

Introduction to Access Quota Policies136
Managing Access Quota Policies ..136
Overview of URL Access Control ..139
Specifying URL Access Control ..141
<table>
<thead>
<tr>
<th>Chapter 7: URL Filtering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introducing URL Filtering</td>
</tr>
<tr>
<td>URL Filtering Workflow</td>
</tr>
<tr>
<td>Managing URL Filtering Policies</td>
</tr>
<tr>
<td>Enabling URL Filtering</td>
</tr>
<tr>
<td>Creating a New Policy</td>
</tr>
<tr>
<td>Modifying and Deleting Policies</td>
</tr>
<tr>
<td>URL Filtering Settings</td>
</tr>
<tr>
<td>Requesting URL Re-classification and URL Lookup</td>
</tr>
<tr>
<td>URL Filtering Exceptions</td>
</tr>
<tr>
<td>Work and Leisure Schedule Settings</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 8: FTP Scanning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
</tr>
<tr>
<td>FTP Settings</td>
</tr>
<tr>
<td>Proxy Settings</td>
</tr>
<tr>
<td>Passive and Active FTP</td>
</tr>
<tr>
<td>Client Requests</td>
</tr>
<tr>
<td>FTP Scanning Options</td>
</tr>
<tr>
<td>Enabling FTP Traffic and FTP Scanning</td>
</tr>
<tr>
<td>Scan Direction</td>
</tr>
<tr>
<td>File Blocking</td>
</tr>
<tr>
<td>File Scanning</td>
</tr>
<tr>
<td>Compressed File Handling</td>
</tr>
<tr>
<td>Large File Handling</td>
</tr>
<tr>
<td>Encrypting Quarantined Files</td>
</tr>
<tr>
<td>Scanning for Spyware/Grayware</td>
</tr>
<tr>
<td>Configuring FTP Scanning Settings</td>
</tr>
<tr>
<td>Setting Scan Actions on Viruses</td>
</tr>
<tr>
<td>FTP Access Control Settings</td>
</tr>
<tr>
<td>By Client IP</td>
</tr>
<tr>
<td>Via Server IP Approved List</td>
</tr>
<tr>
<td>Via Destination Ports</td>
</tr>
</tbody>
</table>
Chapter 9: Reports, Logs, and Notifications

Summary Reports ...184
Real-time Statistics ...184
Scanning Activity Tab ..187
 URL Activity Tab ...188
 Spyware Activity Tab ..189
 Security Risk Reporting Tab ..189
Introduction to Reports ..190
Types of Reports ...190
 Blocking-event Reports ...190
 Individual User Reports ...191
 Traffic Reports ..191
 Spyware/Grayware Reports ...192
 Cleanup Reports ..192
Report Settings ...192
 Report Scope (Users and Groups)192
 Report Type (Consolidated or Individual)193
 Options ...193
 Additional Report Settings ..193
Generating Reports ..193
 Real-time Reports ..193
 Scheduled Reports ..198
 Customizing Reports ..202
Introduction to Logs ..204
 Options for Recording Data ...205
 Querying and Viewing Logs ...206
Deleting Logs ...212
Log Settings ...213
Log File Naming Conventions ...215
Exporting Log and Report Data as CSV Files217
Exporting Log Data to Excel ...217
Introduction to Notifications ...218
 Email Notification Settings ..219
 Notification Tokens/Parameters219
 Configuring Notifications ...223
Chapter 10: Testing and Configuring IWSA

EICAR Test File .. 235
Testing Web Reputation .. 236
Testing Upload Scanning .. 236
Testing FTP Scanning ... 237
Testing URL Blocking .. 238
Testing Download Scanning .. 239
Testing URL Filtering .. 239
Testing Java Applet and ActiveX Scanning 240
Additional IWSA Configurations 241
 Securing the IWSA Console .. 241
 Specifying HTTP Scanning .. 241
 Specifying the User Identification Method 242
 Enabling the Guest Account (LDAP only) 242
 Reviewing Scanning and Filtering Policies 242
 Enabling Access Quota Policies 242
 Setting Access Control Settings 243
 Adding or Removing a System Patch 243
 Updating the IWSA Operating System 245
 Checking the Database Connection 245
 Changing the Management Console Password 247
 Configurations After Changing the Console Listening Port 248
 Verifying URL Filtering Settings 249
IWSA Performance Tuning ... 250
 LDAP Performance Tuning .. 250

Appendix A: Contact Information and Web-based Resources

 Contacting Technical Support 254
 IWSA Core Files for Support 254
 Knowledge Base .. 255
 Sending Suspicious Code to Trend Micro 256
 TrendLabs .. 257
 Security Information Center 257

Appendix B: Mapping File Types to MIME Content-types
Appendix C: Architecture and Configuration Files

IWSA Architecture ...267
Main Components ...267
Main Services ...268
Scheduled Tasks ...269
About Configuration Files ...270
Protocol Handlers ...271
Scanning Modules ...272

Appendix D: OpenLDAP Reference

OpenLDAP Server Side Configuration274
Software Package Dependencies ..274
Configuration Files ...274
Tools ..279
Customized Attribute Equivalence Table Configuration282
LDIF Format Sample Entries ...284
Sample Configuration ...285

Appendix E: Deploying IWSA to a VLAN Environment

Scenario 1: Single VLAN Segment ...289
Scenario 2: VLAN Segment with L3 Devices290
Scenario 3: Two Mutually Non-routable VLAN Segments291

Appendix F: Rack Mounting Instructions

Recommended Tools ...293
Four-post Rack Mounting ...296

Appendix G: BMC Logs

Temperature Logs ...308
Voltage Logs ..310
Processor Temperature Logs ...313
CPU VRD Logs ..313
Vcore Logs ..313
System Fan Logs ...314
Platform Security Violation Attempt Logs317
System Power and AC Power State Logs317
Memory Logs ..317
Glossary of Terms

Index
Welcome to the Trend Micro™ InterScan Web Security Appliance Administrator’s Guide for release 3.1 of InterScan Web Security Appliance (IWSA). This guide provides detailed information about all IWSA configuration options. Topics include how to update your software to keep protection current against the latest risks, how to configure and use policies to support your security objectives, configuring scanning, configuring URL blocking and filtering, and using logs and reports.

This preface discusses the following topics:

- *IWSA Documentation* on page xii
- *Audience* on page xii
- *Document Conventions* on page xiii
IWSA Documentation

In addition to the Trend Micro™ InterScan Web Security Appliance Administrator’s Guide, the documentation set for IWSA includes the following:

- **Upgrade Guide**—This guide helps you get “up and running” by introducing IWSA, assisting with installation planning, implementation, and configuration, and describing the main post-upgrade configuration tasks. It also includes instructions on testing your installation using a harmless test virus, troubleshooting, and accessing Support.

- **Online help**—The purpose of online help is to provide “how to’s” for the main product tasks, usage advice, and field-specific information such as valid parameter ranges and optimal values. Online help is accessible from the IWSA Web console.

- **Readme file**—This file contains late-breaking product information that is not found in the online or printed documentation. Topics include a description of new features, installation tips, known issues, and release history.

The latest versions of the Upgrade Guide, Administrator’s Guide, and readme file are available in electronic form at:

http://www.trendmicro.com/download/

- **Knowledge Base**—The Knowledge Base is an online database of problem-solving and troubleshooting information. It provides the latest information about known product issues. To access the Knowledge Base, open:

 http://kb.trendmicro.com

Audience

The InterScan Web Security Appliance documentation is written for IT managers and administrators in medium and large enterprises.

The documentation does not assume the reader has any knowledge of antivirus or anti-spam technology.
Document Conventions

To help you locate and interpret information easily, the IWSA documentation uses the following conventions.

<table>
<thead>
<tr>
<th>CONVENTION</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALL CAPITALS</td>
<td>Acronyms, abbreviations, and names of certain commands and keys on the keyboard</td>
</tr>
<tr>
<td>Bold</td>
<td>Menus and menu commands, command buttons, tabs, options, and ScanMail tasks</td>
</tr>
<tr>
<td>Italic</td>
<td>References to other documentation</td>
</tr>
<tr>
<td>Monospace</td>
<td>Examples, sample command lines, program code, Web URL, file name, and program output</td>
</tr>
</tbody>
</table>

Note:

Configuration notes

Tip:

Recommendations

WARNING!

Reminders on actions or configurations that should be avoided
Introducing InterScan Web Security Appliance

This chapter introduces the InterScan Web Security Appliance and how it helps to ensure your organization's gateway security.

Topics in this chapter include the following:

• How InterScan Web Security Appliance protects against HTTP and FTP security risks
• The benefits of InterScan Web Security Appliance, its main features, and what is new in the latest version
• An explanation of the InterScan Web Security Appliance architecture and the main program components, services, and scheduled tasks

HTTP and FTP Security Risk Overview

Web traffic exposes corporate networks to many potential security risks. While most computer viruses enter organizations through messaging gateways, Web traffic is an increasingly common infection vector for new security risks. For example, “mixed risks,” which take advantage of multiple entry points and vulnerabilities, can use HTTP to spread.
Significant assessment, restoration, and lost productivity costs associated with outbreaks can be prevented. InterScan Web Security Appliance is a comprehensive security product that protects HTTP and FTP traffic in enterprise networks from viruses and other risks.

In addition to antivirus scanning, IWSA also helps with other network security issues.

- Web Reputation scrutinizes URLs before you access potentially dangerous Web sites, especially sites known to be phishing or pharming sites.
- For an additional cost, the URL filtering feature blocks access to Web sites with content prohibited by your organization.
- For an additional cost, Applets and ActiveX security helps to reduce the risk of malicious mobile code by checking digital signatures at the HTTP gateway, and monitoring applets running on clients for prohibited operations.

Hardware Specifications

Hardware and Installed Programs

- **Operating System:** Linux™ Kernel 2.6.14
- **Database:** PostgreSQL 7.4.16 (for logs and reports)
- **CPU:** Intel™ Xeon™ 2.8GHz x 2 with Hyper-threading (4 virtual CPU equivalency)
- **Memory:** 4GB; (4 x 1024MB DDR)

Note: If you are an existing customer and using URL filtering and need optimum performance, contact Technical Support for a 2GB RAM upgrade (for 4GB total RAM).

- **Flash IDE Drive:** 256MB (boot device)
- **Hard Drives:** Two 40GB RAID set in mirror configuration
Compatible Directory Servers

- Microsoft Active Directory™ 2000 and 2003
- Linux OpenLDAP Directory 2.2.16
- Sun™ Java System Directory Server 5.2 (formerly Sun™ ONE Directory Server)

Integration with ICAP 1.0-compliant Caching Devices

Cache servers help moderate Web traffic congestion and save bandwidth. The “retrieve once, serve many” method employed by cache servers permits integration with third-party applications such as virus scanning via IWSA. An open protocol, Internet Caching Acceleration Protocol (ICAP), allows seamless coupling of caching and virus protection. IWSA works with cache servers that support the ICAP 1.0 standard.

X-Authenticated ICAP Headers Support

IWSA now supports X-Authenticated ICAP Headers that are provided by supported ICAP clients, such as NetCache (5.6.2R1) and Blue Coat (SGOS 4.2.1.1). The X-Authenticated Headers comes in two forms: X-Authenticated-User and X-Authenticated-Groups. The advantage of using X-Authenticated Headers is two-fold: first, it reduces LDAP query overhead in IWSA and second, it allows ICAP clients to provide LDAP searches on LDAP servers with different schemas.

What’s New

This section describes the new features in InterScan Web Security Appliance 3.1.

Web Reputation

Web Reputation guards end-users against emerging Web threats. It can improve the Web surfing experience by enhancing Web filtering performance. Since a Web Reputation query returns URL category information (used by the optional URL Filter module), IWSA no longer uses a locally stored URL database.

Web Reputation also assigns reputation scores to URLs. For each accessed URL, IWSA queries Web Reputation for a reputation score and then takes the necessary
action, based on whether this score is below or above the user-specified sensitivity level.

IWSA enables you to provide feedback on infected URLs, which helps to improve the Web Reputation database. This feedback includes product name and version, URL, and virus name. (It does not include IP information, so all feedback is anonymous and protects company information.) IWSA also enables you to monitor the effectiveness of Web Reputation without affecting existing Web-access policies. Results are located in the URL Blocking Log and the Summary page (Security Risk Report tab).

For more Web Reputation information, see *Specifying Web Reputation Rules* on page 90 and *Web Reputation Settings* on page 91.

Anti-phishing and Anti-pharming Based on Web Reputation

IWSA provides anti-phishing and anti-pharming through Web Reputation. Both of the features are enabled by default.

- Use anti-phishing to block Web access to phishing sites, which are meant to steal your private information.
- Use anti-pharming to block attempts to redirect you to imposter Web sites with the intention of stealing private information (usually financial-related).

IntelliTrap

IntelliTrap™ detects potentially malicious code in real-time, compressed executable files that arrive with HTTP data. Virus writers often attempt to circumvent virus filtering by using different file compression schemes. IntelliTrap provides heuristic evaluation of compressed files that helps reduce the risk that a virus compressed using these methods will enter a network through the Web.

For more IntelliTrap information, see *IntelliTrap Pattern and IntelliTrap Exception Pattern Files* on page 20 and *About IntelliTrap* on page 98.

Improved Deferred Scanning for HTTP and FTP Large File Scans

To enhance the Web browsing experience, improved deferred scanning has been implemented. Instead of using a specified data size, IWSA uses a percentage to define how much data is downloaded at a time. At most, every two seconds IWSA
sends a percentage of received data to the browser. The last chunk of data will not be larger than 4KB and is sent to the browser before the scan is finished. For the data download percentage, you can specify either 20, 40, 60, 80, or 100. The default percentage is 60.

For information on handling large files, see Handling Large Files on page 100.

Easier Collection of System Information for Support Diagnosis

You can now collect logging and system configuration information more easily so that you can submit information quickly when contacting Trend Micro Support. The Generate System Information File button on the Administration > Support > Support screen allows you to collect this snapshot of IWSA system information at the click of a button. See online help for complete details.

True File-type Blocking Within Compressed Files

IWSA applies file-type blocking to the contents of a compressed file, such as a zip file. Therefore, a policy meant to block executables will also block any zip file that contains an executable.

For more information, see About True-file Type on page 95.

IntelliTunnel

IWSA uses IntelliTunnel™ technology to block undesirable instant messaging (IM) and authentication connection protocols tunneled across port 80. It uses a dynamic, updatable pattern file to distinguish normal browser traffic from other protocols communicating over port 80.

For more information, see IntelliTunnel Security on page 108.

Direct URL Filter Category Selection

From the Web Reputation database, IWSA has access to over 60 categories of URLs, such as “gambling,” “games,” and “personals/dating.”

Categories are contained in the following logical groups:

- Computers/Bandwidth
- Computers/Harmful
• Computers/Communication
• Adult
• Business
• Social
• General

You can select all the categories of a specific group, or you can browse through the categories that comprise a group and select only certain categories. See more at URL Filtering Settings on page 159.

Real-time Statistics and Alerts
IWSA provides dynamic statistics where the administrator can view the “real-time” information about the IWSA system. Real-time statistics are displayed as graphs and tables in the System Dashboard tab of the Summary page. These statistics include the following:
• Hard Drive
 Hard drive is also a static statistic, updated when the page is opened.
• Bandwidth
• Concurrent Connections
• CPU Usage
• Physical Memory Usage

For more information, see Real-time Statistics on page 184.

Configurable Threshold Warning
You can now set a warning when virus and spyware traffic, database and hard disk size, or bandwidth utilization exceeds a specified threshold. For more information, see Enabling Threshold Alerts Notifications on page 231.

SNMP System and Event Notifications
To work with third-party network monitoring tools, IWSA supports sending several types of notifications as SNMP traps. IWSA sends traps for security risk detections, security violations, program and pattern file updates, and service disruptions. See more information at Enabling SNMP Trap Notifications on page 233.
Since IntelliTrap is considered a type of security risk, it uses the same notifications as HTTP Scanning.

Reverse Proxy Support

IWSA is usually installed close to clients to protect them from security risks from the Internet. However, IWSA also supports being installed as a reverse proxy to protect a Web server from having malicious programs uploaded to it. As a reverse proxy, IWSA is installed close to the Web server that it protects. IWSA receives clients requests, scans all content and then redirects the HTTP requests to the real Web server.

For more information, see Reverse Proxy on page 39.

Logs and Reports

IWSA includes many pre-configured reports to provide a summary of your gateway security status. Reports can be run for a specific time period and customized to only provide information about clients that you’re interested in. There are four main classes of reports:

- Blocking event reports
- Traffic reports
- Spyware/grayware reports
- Cleanup reports.

Reports are generated from log information in the database. IWSA writes log information to text-only logs, text and database logs, or database-only logs. To prevent unneeded log information from consuming excessive disk space, old logs can be deleted on-demand or on schedule.

For more information, see Reports, Logs, and Notifications on page 183.

Additional Reporting Information

IWSA reports Web Reputation, anti-pharming, and anti-phishing on the Summary page and on URL blocking reports:

- **Summary Page: Security Risk Report tab:** Number of accumulated detected pharming sites in a week and 28 days can be displayed in the Security Risk Report like other Web threats.
• **Reports (Real-time and Scheduled):** Blocked pharming sites show up in the following reports because the information is logged in the URL Blocking Log that is used to generate reports:
 - Most blocked URLs
 - Most blocked URLs by day of the week
 - Most blocked URLs by hour

IWSA reports IntelliTrap activity in the following areas:

• **Summary Page: Security Risk Report tab:** Files detected by IntelliTrap are counted as a separate risk in the report.

• **Summary Page: Scanning tab:** Files detected by IntelliTrap are listed in the “Scanning results for” with its frequency.

• **Real-time Report**

For more information, see *Reports, Logs, and Notifications* on page 183.

Main Features

The following InterScan Web Security Appliance features help you maintain HTTP and FTP gateway security.

HTTP Virus Scanning

IWSA scans the HTTP traffic flow to detect viruses and other security risks in uploads and downloads. HTTP scanning is highly configurable—for example, you can set the types of files to block at the HTTP gateway and how InterScan Web Security Appliance scans compressed and large files to prevent performance issues and browser timeouts. In addition, InterScan Web Security Appliance scans for many types of spyware, grayware, and other risks.

Applets and ActiveX Security

To manage potential security issues in mobile code downloads from the Internet, IWSA can block or allow Java applets and ActiveX controls. IWSA includes its own certificate store to manage trusted and flagged certificates used to sign Java applets.
In addition, IWSA can instrument Java applets so their operations are monitored while they run in client browsers. If a prohibited operation is performed, the client is notified and prompted to allow or deny the operation.

URL Filtering

With the URL Filtering option in IWSA, you can set policies based on categories of URLs, such as “Adult”, “Gambling,” and “Financial Services.” When a user requests a URL, IWSA first looks up the category for that URL and then allows or denies access to the URL based on the policies you have set up. You can also define a list of approved URLs that will not be filtered.

Access Quota Policies

To set limits on client Web browsing, InterScan Web Security Appliance allows configuring access quota policies. Clients can surf the Web up to their daily, weekly or monthly limit, after which further browsing is blocked until the configuration interval expires.

URL Access Control

InterScan Web Security Appliance can reduce your server’s scanning workload by not scanning content trusted URLs. Likewise, InterScan Web Security Appliance can refuse requests to access content retrieved from URLs in order to prevent server resources from scanning content that you want to keep out of your organization (URL blocking).

IP Address, Host Name and LDAP Client Identification

InterScan Web Security Appliance supports configuring policies for HTTP virus scanning, Applets and ActiveX security, URL filtering, IntelliTunnel, and access quotas. The scope of policies can be configured using client IP address, host name or LDAP user or group name.

Server and Port Access Control Restrictions

To increase the security of InterScan Web Security Appliance, access control lists limit server access to clients that you specify. Likewise, port access can be blocked to reduce the chance of access for malicious purposes.
FTP Scanning

In addition to scanning FTP uploads and downloads, InterScan Web Security Appliance can block file types at the FTP gateway. To prevent performance issues, the FTP scanning module supports special configurations for compressed files and large files. Spyware and grayware scanning is also supported.

InterScan Web Security Appliance FTP scanning can be deployed onto your environment in conjunction with another FTP proxy server, or InterScan Web Security Appliance can act as its own FTP proxy. To help ensure the security of InterScan Web Security Appliance, several security-related configurations are available to control access to IWSA and its ports.

Reports and Logs

To provide current information about your HTTP and FTP gateway security, IWSA is pre-configured to generate many types of blocking-event reports, traffic reports, spyware/grayware reports, and cleanup reports. Reports can be generated on demand or scheduled on a daily, weekly, or monthly basis. Log and report data can be exported to comma-separated value (CSV) files for further analysis. To prevent logs from consuming excessive disk space, a scheduled task deletes older logs from the server.

Notifications

InterScan Web Security Appliance can issue several types of notifications in response to program or security events. Administrator notifications are sent via email to the designated administrator contacts. User notifications are presented in the requesting client’s browser. Both administrator and user notifications can be customized.

To work with network management tools, InterScan Web Security Appliance can also issue notifications as SNMP traps.

Support for Multiple InterScan Web Security Appliance Installations

The method to fully administer multiple IWSA devices from a single console is done through Trend Micro Control Manager. However, if multiple IWSA devices are configured to access the same database server, policies (HTTP, URL filtering, applets
and ActiveX, IntelliTunnel, access quota policies, etc.) are shared between all the servers.

The “master”/“slave” designation from the Server Farm page in the Web console only specifies how dynamic data (list of temporarily blocked URLs and list of client IP addresses suspected of spyware infection) is shared between multiple IWSA devices.

If all the IWSA installations share the same database, reports and logs show a consolidated view of all IWSA devices on your network.
Because new malicious programs and offensive Web sites are developed and launched daily, it is imperative to keep your software updated with the latest pattern files and engines, as listed on the Updates Schedule page on the IWSA Web console.

Topics in this chapter include the following:

- An explanation of Trend Micro’s ActiveUpdate feature
- How to update program components via the native IWSA Web console or through Trend Micro Control Manager
- Configuring proxy settings to enable Internet connectivity for updates
- An explanation of the program components that need to be updated
- Getting version information about components being used by IWSA
- Invoking manual (on-demand) and scheduled updates
- Forcing a manual update
- Verifying a successful update
- Rolling back to previous versions of pattern files or the scan engine
- Applying controlled pattern releases
Product Maintenance

From time to time, Trend Micro may release a patch for a reported known issue or an upgrade that applies to your product. To find out whether there are any patches available, visit the following URL:

http://www.trendmicro.com/download/

Clicking the link for InterScan Web Security Appliance takes you to the Update Center page for IWSA. Scroll down to review the patches that are available.

Patches are dated. If you find a patch that you have not applied, open the readme document to determine whether the patch applies to you. If so, follow the upgrade instructions in the readme.

Renewing Your Maintenance Agreement

Trend Micro or an authorized reseller provides technical support, virus pattern downloads, and program updates for one (1) year to all registered users, after which you must purchase renewal maintenance.

If your Maintenance Agreement expires, scanning will still be possible, but virus pattern and program updates will stop. To prevent this, renew the Maintenance Agreement as soon as possible.

To purchase renewal maintenance, contact the same vendor from whom you purchased the product. A Maintenance Agreement, extending your protection for a year, will be sent by post to the primary company contact listed in your company’s Registration Profile.

To view or modify your company’s Registration Profile, log into the account at the Trend Micro online registration Web site:

https://olr.trendmicro.com/registration

To view your Registration Profile, type the login ID and password created when you first registered your product with Trend Micro (as a new customer), and click Login.
About ActiveUpdate

ActiveUpdate is a service common to many Trend Micro products. ActiveUpdate connects to the Trend Micro Internet update server to enable downloads of the latest pattern files and engines.

ActiveUpdate does not interrupt network services, or require you to reboot your computers. Updates are available on a regularly scheduled interval that you configure, or on demand.

Updating From the IWSA Console

If you are not using Trend Micro Control Manager for centralized administration of your Trend Micro products, IWSA will poll the ActiveUpdate server directly. Updated components are deployed to IWSA on a schedule you define, such as the following:

- Minutes (15, 30, 45, 60)
 These 15-minute interval updates only apply to virus, spyware, phish, IntelliTrap, and IntelliTunnel.
- Weekly
- Daily
- Hourly
- On demand (manually)

Note: Trend Micro recommends hourly updates of the pattern files and daily and weekly updates of engines.

Proxy Settings for Updates

If you use a proxy server to access the Internet, you must enter the proxy server information into the IWSA Web console before attempting to update components. Any proxy information that you enter is used for both updating components from Trend Micro’s update servers and for product registration and licensing.
To configure a proxy server for component and license updates:

1. Open the IWSA Web console and click Updates > Connection Settings.
2. Select Use a proxy server for pattern, engine, and license update to specify a proxy server or port.
3. If your proxy server requires authentication, type a user ID and password in the fields provided. Leave these fields blank if your proxy server does not require you to authenticate.
4. In the Pattern File Setting section, type the number of pattern files to keep on the InterScan Web Security Appliance device after updating to a new pattern (default and recommended setting = 3 pattern files). Keeping old pattern files on your server allows you to roll back to a previous pattern file in the event of an incompatibility with your environment; for example, excessive false positives. When the number of pattern files on the server exceeds your configuration, the oldest pattern file will be automatically deleted.
5. Click Save.

![Configuration](image)

FIGURE 1. Configure proxy settings for update and license renewal in the Connection Settings screen
Chapter 2: Updates

Updatable Program Components

To ensure up-to-date protection against the latest risks, there are several components you can update:

- **Pattern files:** These files are: Virus, PhishTrap spyware/grayware, IntelliTrap, and IntelliTrap Exception. These files contain the binary “signatures” or patterns of known security risks. When used in conjunction with the scan engine, IWSA is able to detect known risks as they pass through the Internet gateway. New virus pattern files are typically released at the rate of several per week, while the PhishTrap and grayware/spyware pattern files are updated less frequently.

- **IntelliTunnel signature definition file:** This file contains “signatures” of certain HTTP interactions (such as instant messaging protocols tunneled through HTTP and SSL authentication requests) which you may wish to control. New signature definition files are typically released a few times a year as the covered protocols evolve or new types of HTTP interactions are added. See [*IntelliTunnel Security*](#) on page 108.

 Note: The IntelliTunnel feature is unrelated to the virus scanning facility and uses its own scanning engine, which is not dynamically updatable.

- **Anti-virus scan engine:** This is the module that analyzes each file’s binary patterns and compares them against the binary information in the pattern files. If there is a match, the file is determined to be malicious.

- **URL Filtering Engine:** IWSA utilizes the Trend Micro URL Filtering Engine to perform URL categorization and reputation rating based on the data supplied by the Trend Micro Web Reputation feature. Trend Micro recommends using the default setting of a weekly update check to ensure that your installation has the most current URL Filtering Engine.

Virus Pattern File

The Trend Micro scan engine uses an external data file, called the virus pattern file, to keep current with the latest viruses and other Internet risks such as Trojans, mass mailers, worms, and mixed attacks. New virus pattern files are created and released several times a week, and any time a particularly pernicious risk is discovered.
All Trend Micro antivirus programs using the ActiveUpdate feature (see About ActiveUpdate starting on page 15 for details) can detect whenever a new virus pattern is available at the server, and can be scheduled to automatically poll the server every hour, day, week, and so on, to get the latest file. Virus pattern files can also be manually downloaded from the following Web site:

http://www.trendmicro.com/download/pattern.asp

Here, you can find the current version, release date, and a list of the new virus definitions included in the file.

How it Works

The scan engine works together with the virus pattern file to perform the first level of detection, using a process called pattern matching. Because each virus contains a unique binary “signature” or string of tell-tale characters that distinguishes it from any other code, the virus experts at TrendLabs capture inert snippets of this code to include in the pattern file. The engine then compares certain parts of each scanned file to the data in the virus pattern file looking for a match.

Pattern files use the following naming format:

\(lpt$vpn.### \)

where ### represents the pattern version (for example, 400). To distinguish a given pattern file with the same pattern version and a different build number, and to accommodate pattern versions greater than 999, the IWSA Web console displays the following format:

\(\text{roll number}.\text{pattern version}.\text{build number} \) (format: xxxxx.###.xx)

• roll number—This represents the number of rounds when the pattern version exceeded 999 and could be up to five digits.
• pattern version—This is the same as the pattern extension of \(lpt$vpn.### \) and contains three digits.
• build number—This represents the patch or special release number and contains two digits.

If multiple pattern files exist in the same directory, only the one with the highest number is used. Trend Micro publishes new virus pattern files on a regular basis (typically several times per week), and recommends configuring a daily automatic
update on the **Updates > Schedule** screen. Updates are available to all Trend Micro customers with valid maintenance contracts.

Note: There is no need to delete the old pattern file or take any special steps to “install” the new one.

PhishTrap Pattern File

As new “phishing” scams that attempt to steal personal data through counterfeit versions of legitimate Web sites are discovered, Trend Micro collects their URLs and incorporates the information into the PhishTrap pattern file. The PhishTrap pattern file is saved in `/etc/iscan/phishB.ini` and contains an encrypted list of known phishing URLs.

Spyware/Grayware Pattern File

As new hidden programs (grayware) that secretly collect confidential information are written, released into the public, and discovered, Trend Micro collects their tell-tale signatures and incorporates the information into the spyware/grayware pattern file. The spyware/grayware pattern file is stored in the following directory:

```
/etc/iscan/ssaptn.###
```

where `###` represents the pattern version. This format distinguishes a given pattern file with the same pattern version and a different build number. It also accommodates pattern versions greater than 999. The IWSA Web console displays the following format:

```
roll number.pattern version.build number (format: xxxxx.###.xx)
```

- **roll number**—This represents the number of rounds when the pattern version exceeded 999 and could be up to five digits.
- **pattern version**—This is the same as the pattern extension of `tmaptn.###` and contains three digits.
- **build number**—This represents the patch or special release number and contains two digits.
IntelliTrap Pattern and IntelliTrap Exception Pattern Files

IntelliTrap detection uses a scan option in the VSAPI engine with IntelliTrap pattern (for potentially malicious files) and IntelliTrap Exception pattern (as an allowed list). IWSA uses the IntelliTrap option and patterns available for detecting malicious compressed files, such as bots in compressed files. Virus writers often attempt to circumvent virus filtering by using different file compression schemes. IntelliTrap provides a heuristic evaluation of compressed files to help reduce the risk that a bot or any other malicious compressed file may cause to a network.

IntelliTrap pattern `tmblack.###` and IntelliTrap exception pattern `tmwhite.###` are saved in the `/etc/iscan/` directory.

Scan Engine

At the heart of all Trend Micro antivirus products lies a proprietary scan engine. Originally developed in response to the first computer viruses the world had seen, the scan engine today is exceptionally sophisticated. It is capable of detecting Internet worms, mass-mailers, Trojan horse risks, network exploits and other risks, as well as viruses. The scan engine detects the following types of risks:

- “in the wild,” or actively circulating
- “in the zoo,” or controlled viruses that are not in circulation, but are developed and used for research and “proof of concept”

In addition to having perhaps the longest history in the industry, the Trend Micro scan engine has also proven in test after test to be one of the fastest—whether checking a single file, scanning 100,000 files on a desktop machine, or scanning email traffic at the Internet gateway. Rather than scan every byte of every file, the engine and pattern file work together to identify not only tell-tale characteristics of the virus code, but the precise location within a file where the virus would hide. If a virus is detected, it can be removed and the integrity of the file restored.

To help manage disk space, the scan engine includes an automatic clean-up routine for old viruses, spyware, and IntelliTrap pattern files as well as incremental pattern file updates to help minimize bandwidth usage.

In addition, the scan engine is able to decode all major internet encoding formats (including MIME and BinHex). It also recognizes and scans common compression formats, including Zip, Arj, and Cab. Most Trend Micro products also allow
administrators to determine how many layers of compression to scan (up to a maximum of 20), for compressed files contained within a compressed file.

It is important that the scan engine remain current with the latest risks. Trend Micro ensures this in two ways:

- Frequent updates to the scan engine’s data file, called the virus pattern file, which can be downloaded and read by the engine without the need for any changes to the engine code itself
- Technological upgrades in the engine software prompted by a change in the nature of virus risks, such as the rise in mixed risks like SQL Slammer

In both cases, updates can be automatically scheduled, or an update can be initiated on demand.

The Trend Micro scan engine is certified annually by international computer security organizations, including the International Computer Security Association (ICSA).

About Scan Engine Updates

By storing the most time-sensitive virus information in the virus pattern file, Trend Micro is able to minimize the number of scan engine updates, while at the same time keeping protection up-to-date. Nevertheless, Trend Micro periodically makes new scan engine versions available. New engines are released, for example, when:

- New scanning and detection technologies have been incorporated into the software
- A new, potentially harmful virus is discovered that cannot be handled by the current engine
- Scanning performance is enhanced
- Support is added for additional file formats, scripting languages, encoding, and/or compression formats

To view the version number for the most current version of the scan engine, visit:

http://www.trendmicro.com
Web Reputation Database

The Web Reputation database resides on a remote server. When a user attempts to access a URL, IWSA retrieves information about this URL from the Web Reputation database and stores it in the local cache. Having the Web Reputation database on a remote server and building the local cache with this database information reduces the overhead on IWSA and improves performance.

The following are the information types the Web Reputation database can retrieve for a requested URL:

- Web category
- Pharming and phishing flags used by anti-pharming and anti-phishing detection
- Web Reputation scores used to block URL access, based on a specified sensitivity level (see Specifying Web Reputation Rules on page 90)

The Web Reputation database is updated with the latest categorization of Web pages.

If you believe the reputation of a URL is misclassified or you want to know the reputation of a URL, please use the link below to notify Trend Micro:

Incremental Updates of the Pattern Files and Engines

ActiveUpdate supports incremental updates of the latest pattern and engine files. Rather than downloading the entire 7 or 8MB file each time, ActiveUpdate can download only the portion of the file that is new and append it to the existing file. This efficient update method can substantially reduce the bandwidth needed to update your antivirus software and deploy pattern and engine files throughout your environment.

Component Version Information

To know which pattern file, scan engine, or application build you are running, click Summary in the main menu. The version in use is shown in the Current Version column on the Scanning tab.
Manual Updates

The effectiveness of IWSA depends upon using the latest pattern and engine files. Signature-based virus and spyware/grayware scanning works by comparing the binary patterns of scanned files against binary patterns of known risks in the pattern files. Trend Micro frequently releases new versions of the virus pattern and spyware pattern in response to newly identified risks. Similarly, new versions of the PhishTrap pattern are released as new phishing URLs are identified.
New versions of the Trend Micro scan engine are updated as performance is improved and features added to address new risks.

Note: If Internet connections on your network pass through a proxy server, you need to configure your proxy information. Click **Updates > Connection Settings** from the main menu and enter your proxy server information.

To update the engines and pattern files:
1. Click **Summary** on the main menu and make sure the **Scanning** tab is active.
2. For all of the components listed on the **Scanning** tab, select components to update and then click **Update**.

 If IWSA is already using the latest version of the component and no update is available, a message asks whether you want to force an update. Forcing an update is not necessary unless the components on the IWSA device are corrupt or otherwise cannot be used.

Forced Manual Updates

IWSA provides an option to force an update to the pattern file and the scan engine when the version on IWSA is greater than or equal to its counterpart on the remote download server (normally IWSA would report that no updates are available). This feature is useful when a pattern file or scan engine is corrupt and you need to download the component again from the update server.

To force an update of a pattern file or scan engine:
1. Click **Summary** on the main menu.
2. Select the component to update and then click **Update**.

 A message box appears if the version of the pattern file or scan engine on IWSA is greater than or equal to the counterpart on the remote download server. If the pattern file on IWSA is older than the one on the remote download server, the newer pattern file is downloaded.
3. Click **OK** in the message box to start the forced update.
Chapter 2: Updates

Scheduled Updates

IWSA can perform scheduled updates for the following pattern files:

- Virus
- Spyware
- Phish Pattern
- IntelliTrap
- IntelliTunnel

Likewise, IWSA can perform scheduled updates for the Scan and URL Filtering engines.

To schedule automatic pattern file and engine updates:

1. Click Updates > Schedule on the main menu.
2. For each type of updatable component, select the update interval.
 The following are your options:
 - Every x minutes (pattern files only; select the number of minutes between update interval)
 - Hourly (pattern files only)
 - Daily
 - Weekly (select a day from the drop-down menu; this is the recommended setting for the latest pattern and engines updates)

 Note: Scheduled updates for a given component can be disabled by selecting Manual updates only in each component section.

3. For each component, select a Start time for the update schedule to take effect.
4. Click Save.
FIGURE 3. Configure scheduled updates for the pattern files, scan engine, and URL filtering engine

Note: Use the Summary screen in the IWSA Web console to verify the current version of the virus pattern file. If your network configuration includes a cache server, Trend Micro recommends that you clear the cache and reboot the cache server after updating the virus pattern file. This will force all URL requests to be scanned, ensuring better virus protection. Consult your cache server documentation for information on how to clear the cache and reboot the server.
Maintaining Updates

Verifying a Successful Update

The **Scanning** tab of the **Summary** page in the IWSA Web console displays the version of the component in use, plus the time and date of the last update. Check the Summary page to verify that a manual or scheduled update has completed successfully.

Update Notifications

IWSA can issue notifications to proactively inform an administrator about the status of a pattern or engine update. For more information about configuring update-related notifications, see **Enabling Pattern File Update Notifications** starting on page 229 and **Enabling URL Filtering and Scan Engines Update Notifications** starting on page 230.

Rolling Back an Update

IWSA checks the program directory and uses the latest pattern file and engine library file (libvsapi.so) to scan inbound/outbound traffic. It can distinguish the latest pattern file by its file extension; for example, lpt$vpn.401 is newer than lpt$vpn.400.

Occasionally, a new pattern file may incorrectly detect a non-infected file as a virus infection (known as a “false alarm”). You can revert to the previous pattern file or engine library file.

Note: IWSA does not support rollback for the URL filtering engine.

To roll back to a previous pattern file or scan engine:

1. Click **Summary** on the main menu.
 The **System Dashboard** tab opens by default.
2. Click the **Scanning** tab.
3. Select the component to roll back and click **Rollback**.
A progress bar indicates the rollback progress, and a message screen then displays the outcome of the rollback. After the rollback, you can find the current version and date of the last update on the Scanning tab of the Summary screen.

Deleting Old Pattern Files

After updating the pattern file, IWSA keeps old pattern files (Virus, Spyware, IntelliTrap, and IntelliTrap Exception pattern files) on the server so they’re available to accommodate a roll back. The number of pattern files kept on the server is controlled by the Number of pattern files to keep setting on the Updates > Connection Settings page.

If you need to manually delete pattern files, they can be found in the /etc/iscan/ directory of IWSA.

Controlled Virus Pattern Releases

There are two release versions of the Trend Micro virus pattern file:

- The Official Pattern Release (OPR) is Trend Micro's latest compilation of patterns for known viruses. It is guaranteed to have passed a series of critical tests to ensure that customers get optimum protection from the latest virus risks. Only OPRs are available when Trend Micro products poll the ActiveUpdate server.
- A Controlled Pattern Release (CPR) is a pre-release version of the Trend Micro virus pattern file. It is a fully tested, manually downloadable pattern file, designed to provide customers with advanced protection against the latest computer viruses and to serve as an emergency patch during a virus risk or outbreak.

To apply the latest CPR to IWSA:

Note: Once you apply a CPR, incremental updates will not be possible. This means that subsequent updates will require downloading the entire pattern file rather than just the new patterns, resulting in a slightly longer pattern download time.

In order for IWSA to access the new pattern file, ensure that it has the same permission and ownership as the previous pattern file.
1. Open http://www.trendmicro.com/download/pattern-cpr-disclaimer.asp and click Agree to signify your agreement with the terms and conditions of using a Trend Micro CPR.

2. Download the CPR to a temporary folder on the IWSA device. The file name will be in the form lptXXX.zip.

3. Stop all the IWSA services.

4. Extract the contents of the files that you downloaded to the /etc/iscan/directory of IWSA.

5. Restart all IWSA services.

 To verify that the CPR was applied correctly, click Summary in the main menu and then the Scanning tab and confirm that the virus pattern version in use corresponds to the version of the CPR that you tried to apply.
HTTP Configuration

Before you start using IWSA to scan for malicious HTTP downloads, filter or block URLs, and apply access quotas for your clients, you need to configure some HTTP settings that control the HTTP traffic flow. IWSA can be used in conjunction with another proxy server on your network; alternatively, you can configure IWSA to use its native proxy.

Topics in this chapter include:

- Enabling the HTTP traffic flow
- Configuring IWSA as a forward proxy to scan content downloaded via HTTP, either stand-alone or in conjunction with another proxy
- Configuring IWSA as a reverse proxy to scan content uploaded to a Web server from clients
- Using IWSA in conjunction with a Layer 4 switch or router to avoid the need to adjust client Internet connection settings
- Configuring access control settings to control HTTP access by the client’s IP address
- Adding “trusted” servers to the Server IP Approved List
- Configuring destination port restrictions
Enabling the HTTP Traffic Flow

In order for your clients to access the Internet, HTTP traffic flow through IWSA must be enabled. (HTTP traffic flow is enabled by default.) Likewise, HTTP access can be turned off from the IWSA Web console. Trend Micro recommend you set the traffic flow before configuring the other HTTP settings discussed in this chapter.

To enable or disable the HTTP traffic flow through IWSA:

1. Select Summary on the main menu.
 The state of HTTP traffic flowing through IWSA appears at the top of the Scanning page.

2. Select one of the following:
 • If HTTP traffic is turned off, click the Turn On link to enable it.
 • If HTTP traffic is turned on, click the Turn Off link to disable it.

When HTTP traffic is turned off, your clients cannot access Web sites or any other services carried through HTTP. To see an example of these links at the top of the Summary page, see the figure on page 23.

Specifying a Proxy Configuration and Related Settings

Choose the scanning mode that corresponds to the physical installation of IWSA on the network.

• Network bridge—IWSA passes traffic from one network device such as a switch, router, or firewall, to another device for delivery to the requesting client. IWSA acts as a bridge between the devices and transparently scans passing HTTP and FTP traffic.

 Network bridge settings will apply to both HTTP and FTP traffic. If you select the Network bridge option, FTP proxy settings will be disabled. SSL (HTTPS) requests are typically fulfilled, but the content is not scanned.
If the clients and IWSA are in the same segment, no configuration is required; otherwise, see below for mixed segment configuration considerations.

- If you use a switched network with VLANs, configure bridge ID and static route settings in the Web console. Refer to Deploying IWSA to a VLAN Environment on page 287 for details.
- If the network device and IWSA device are on different network segments, use the IWSA routing table to point IWSA to the device.
- **Fail-open on system error**—Choose this option to have IWSA pass unscanned network traffic when it is powered off, in Rescue Mode, or down from a system error. Remove the check (i.e., fail-closed) to halt traffic if IWSA is not in normal operational mode (for example, to avoid a situation where the server is down but no one is aware because traffic is still flowing).
- **HTTP proxy**—This configuration is used to protect clients from receiving malicious HTTP-borne risks from a server. This is the most common configuration, and the typical use case is to protect Web users on your network from receiving malicious Internet downloads. IWSA and the clients that it protects are typically in the same LAN.
- **ICAP server**—Choose this topology if you have an ICAP client on the network and you want it to pass traffic to IWSA for scanning. IWSA will act as an ICAP server.

Proxy Configurations

There are several types of proxy configurations:

- No upstream proxy (stand-alone mode)
- Upstream proxy (dependent mode)
- Network bridge mode
- Simple transparency
- Reverse proxy

No Upstream Proxy (Stand-alone Mode)

The simplest configuration is to install IWSA in stand-alone mode, with no upstream proxy. In this case, IWSA acts as a proxy server for the clients. Advantages of this configuration are its relative simplicity and that there is no need for a separate proxy
server. A drawback of a forward proxy in stand-alone mode is that each client must configure the InterScan Web Security Appliance device as their proxy server in their browser’s Internet connection settings. This requires cooperation from your network users, and also makes it possible for users to exempt themselves from your organization’s security policies by re-configuring their Internet connection settings.

Note: If you configure IWSA to work in stand-alone mode, each client on your network needs to configure Internet connection settings to use the IWSA device and port (default 8080) as their proxy server.

![Diagram of Standalone (no upstream proxy)](image)

FIGURE 4. Forward, no upstream proxy

To configure a stand-alone installation:

1. Select HTTP > Configuration > Proxy Scan Settings from the main menu.
2. Ensure that **Forward proxy** is enabled, and **Enable upstream proxy** and **Enable transparency** are not selected.
3. Click Save.
Chapter 3: HTTP Configuration

FIGURE 5. Configuring the type of proxy and transparency on the Proxy Scan Settings page

Network Bridge Mode

The network bridge acts as a bridge between two network devices (switch, router, or firewall) and transparently scans HTTP and FTP traffic.

To configure a network bridge mode installation:

1. Select HTTP > Configuration > Proxy Scan Settings from the main menu.
2. Ensure that Forward proxy is enabled, and Enable upstream proxy and Enable transparency are not selected.
3. Click **Save**.

Upstream Proxy (Dependent Mode)

IWSA can be configured to work in conjunction with another proxy server on your network. In this configuration, IWSA passes requests from clients to another proxy server, which forwards the requests to the requested server.

Like stand-alone mode, the dependent mode proxy configuration also requires client users to configure the IWSA device as their proxy server in their Internet connection settings. One benefit of using an upstream proxy is improved performance via content caching on the upstream proxy server. IWSA does not perform any content caching, so every client request needs to contact the Internet server to retrieve the content. When using an upstream proxy, pages cached on the proxy server are served more quickly.

Note: If IWSA is to be configured to run in upstream proxy mode with a designated proxy server, then Trend Micro recommends that the proxy settings for Updates also be configured for a designated proxy server to allow WAN access (see *Proxy Settings for Updates* on page 15). Certain types of update events utilize the Updates proxy settings to retrieve important information.
Chapter 3: HTTP Configuration

FIGURE 6. Forward, upstream proxy

Note: When IWSA is configured in HTTP Forward Proxy mode with upstream proxy enabled, pharming sites cannot be effectively blocked.

To configure IWSA to work with an upstream proxy:

1. Select HTTP > Configuration > Proxy Scan Settings from the main menu.
2. Check Forward proxy.
3. Check Enable upstream proxy and enter the IP address or host name of the upstream Proxy server, and its Port.
4. Click Save.
Transparent Proxy

Transparency is the functionality whereby client users do not need to change their Internet connection’s proxy settings to work in conjunction with IWSA. Transparency is accomplished with a Layer 4 switch that redirects HTTP packets to a proxy server, which then forwards the packets to the requested server.

IWSA supports “simple” type transparency. Simple transparency is supported by most Layer 4 switches. While it is compatible with a wide variety of network hardware from different manufacturers, configuring simple transparency does impose several limitations:

- When using simple transparency, the User Identification method to define policies is limited to IP address and/or host name; configuring policies based on LDAP is not possible.
- FTP over HTTP is not available; thus, links to ftp:// URLs may not work if your firewall settings do not allow FTP connections. Alternatively, links to ftp:// URLs may work, but the files will not be scanned.
- Simple transparency is not compatible with some older Web browsers when their HTTP requests don't include information about the host.
- HTTP requests for servers that use a port other than the HTTP default port 80 are redirected to IWSA. This means SSL (HTTPS) requests are typically fulfilled, but the content is not scanned.
- Do not use any source NAT (IP masquerade) downstream of IWSA, since IWSA needs to know the IP address of the client to clean.
- A DNS server is needed for DCS to resolve the client machine name from its IP address in order to perform a cleanup.

The benefit of enabling transparency is that clients’ HTTP requests can be processed and scanned by IWSA without any client configuration changes. This is more
convenient for your end users, and prevents clients from exempting themselves from security policies by simply changing their Internet connection settings.

FIGURE 7. Forward proxy with transparency

Note: In simple transparency mode, IWSA does not accept SSL (HTTPS) traffic. Configure the router not to redirect port 443 traffic to IWSA.

To configure simple transparency:

1. Select **HTTP > Configuration > Proxy Scan Settings** from the main menu.
2. Check **Forward proxy**.
3. Check **Enable transparency** and **Use simple transparency**.
4. Under the **Client Requests** section, change the **Listening port number** to the same port that the Layer 4 switch is configured to use.
5. Click **Save**.

Reverse Proxy

IWSA can be used to scan content that clients upload to a Web server. When IWSA is installed using either the forward or reverse proxy scan configuration, traffic of both directions (uploading and downloading) is scanned. Since most HTTP requests consist of an empty body, scanning files that are being uploaded is not so useful in
the forward proxy configuration. In the reverse proxy configuration, there is more emphasis on scanning files that are being uploaded than in the forward proxy configuration.

![Diagram showing IWSA server, Web server, and Clients](image)

FIGURE 8. Reverse proxy protects Web server from clients

To configure IWSA as a reverse proxy:

1. Select HTTP > Configuration > Proxy Scan Settings from the main menu.
2. Select Reverse proxy, and enter the IP address or host name of the Web server that the reverse proxy will protect.
3. Enter the Port (default = 80).
4. If you want to enable HTTPS access, select Enable SSL Port and enter the Port Number.
5. Click Save.

Note: If communication with your internal Web servers will be through SSL, don’t forget to configure the HTTPS ports. For more information, see HTTPS Ports starting on page 50.
To complete your reverse proxy configuration, the IWSA device’s IP address must be registered in the DNS as the host name of the Web server that the reverse proxy is protecting. In this way, the IWSA device appears to be the Web server, as far as the clients are concerned.

Proxy-related Settings

In addition to specifying the type of proxy configuration you want, you can set additional parameters for the configuration:

- HTTP listening port
- Anonymous FTP logon over HTTP email address

HTTP Listening Port

If you enable HTTP scanning, be sure to specify the appropriate listening port number of a given HTTP handler so the traffic will go through.

To configure the listening port number:

1. Open the IWSA Web console and click HTTP > Configuration > Proxy Scan Settings.
2. In the Listening port number text box, type the port number (default values are 1344 for ICAP and 8080 for HTTP Proxy).
3. Click Save.

Note: IWSA handles HTTPS connections differently from HTTP connections. Because the data is encrypted, IWSA is not capable of scanning content downloaded via HTTPS. IWSA examines the initial CONNECT request, and rejects it if it does not match the set parameters (such as the target URL is on the Block List or contained in the PhishTrap pattern file, or the port number used is not defined in the HttpsConnectACL.ini file).

Anonymous FTP Logon Over HTTP Email Address

FTP over HTTP enables users to access hyperlinks to ftp:// URLs in Web pages and enter a URL starting with ftp:// in the address bar of their browser. If the user omits the user name when accessing this type of URL, anonymous login is used, and the
The user's email address is conventionally used as a password string that is passed to the FTP server.

To configure the email address to use for anonymous FTP logon over HTTP:

1. Select **HTTP > Configuration > Proxy Scan Settings** from the main menu.
2. Type the **Email address** to use for anonymous FTP logon.
3. Click **Save**.

Hybrid Scan

Hybrid Scan establishes four processes, each having 500 threads. Hybrid Scan is the combination of the multi-process and multi-thread architectures. The multi-thread architecture allows more connections to be established while multi-process reduces the risk of losing all connections due to a dead process.

Hybrid Scan provides a proxy framework where multiple sibling processes share access to the same set of listening sockets, and each process handles multiple sessions using TPC.

Note: There is a chance of losing some HTTP connections if one of the four processes dies. However, if this happens, the loss is only 25% of all connections, which is low for HTTP traffic.

Number of Concurrent Connections

The maximum number of concurrent connections that IWSA will accept is 4000. Beyond this number, IWSA will reject client HTTP requests. At 1200 concurrent connections, the average user will experience approximately two seconds of additional latency while browsing Internet Web pages. Between 1200 and 4000 concurrent connections, latency will increase depending on the complexity of the Web site. By monitoring the concurrent connections display on the Summary page, you can monitor how the users' browsing experience may being affected by connection load on the system (see **Concurrent Connections Usage Display** on page 186).
Network Configuration and Load Handling

At 1200 concurrent connections, each IWSA device can process traffic for a community of 3000 users on average. This number assumes that 20% of those users are actively making Internet requests at any one time. To support a larger or more active user community, you will need to configure additional IWSA servers to work together in a server farm (see Configuring an IWSA Server Farm on page 43).

You can install IWSA on the network in the following modes:

- **Bridge mode**—Run a cable from the external (Internet-facing) network device to IWSA port 2, and from IWSA port 1 to an internal network device.
- **HTTP proxy mode**—Run a cable from port 1 to the internal network device.
- **ICAP mode**—Connect IWSA to the ICAP client using port 1.

After setting up the IWSA server, open the IWSA Web console and click HTTP > Configuration > Proxy Scan Settings to set the corresponding IWSA scan mode.

Configuring an IWSA Server Farm

Multiple IWSA devices can be used to balance traffic and scanning loads. In a multiple server configuration, one server is designated as the “master” and the other servers in the farm are designated as “slaves.” Slave servers get their configuration settings from the master, and report security and program event information back to the master so administrators can view consolidated reports from all IWSA devices on their network.

Note: An IWSA server farm must have only one master server.

To configure server designation:

1. Open the IWSA Web console and click Administration > IWSA Configuration > IWSA Server Farm.
2. Select Enable for use in a multiple IWSA server configuration.
3. Type a value for the Master’s listening port number (default is 1444).
4. Under Server role, click one of the following two options:
 - Master server
• Slave server
 For a Slave server role, type the **Master’s IP address** in the field provided.

5. Click **Save**.

![FIGURE 9. Configuring the server’s role, either master or slave, in the Server Configuration screen](image)

Configuring Access Control Settings

IWSA includes several configurations to control your clients’ HTTP access. These settings are separate from any scanning or URL filtering policies that you may configure for your user base.

- HTTP access can be selectively enabled for client users with a given IP address, IP range, or IP mask.
- To improve performance when client users request content from “trusted” sites, scanning, URL filtering, and URL blocking can be disabled for servers with a given IP address, or servers within a given IP range or IP mask.
- HTTP and HTTPS requests to ports or port ranges can be selectively allowed or denied for all users whose Internet access passes through InterScan Web Security Appliance. This feature is convenient if you want to prevent certain types of Internet transfers.

Identifying Clients and Servers

For controlling client HTTP access or configuring servers as trusted, there are three ways to identify the client or server:
• IP address: a single IP address, for example, 123.123.123.12
• IP range: clients that fall within a contiguous range of IP addresses, for example, from 123.123.123.12 to 123.123.123.15
• IP mask: a single client within a specified subnet, for example, entering IP = 192.168.0.1 and Mask = 255.255.255.0 will identify all machines in the 192.168.0.x subnet. Alternatively, the Mask can be specified as a number of bits (0 to 32)

Client IP

In addition to the default setting that allows all clients on your network to access the InterScan Web Security Appliance proxy, IWSA can be configured to allow HTTP access only to those clients that you explicitly specify. If your organization does not allow everyone on your network to access the Internet, this is a convenient way to block HTTP access by default.

To allow HTTP access based on client IP:

1. Select HTTP > Configuration > Access Control Settings from the main menu.
 In bridge mode, the destination and HTTPS ports are not available; therefore, when in this mode the Destination Ports and HTTPS Ports tabs are not present in the Access Control Settings screen.

2. Ensure that the Client IP tab is active.

3. Check Enable HTTP Access Based On Client IP.

4. Select the radio button that describes how clients are allowed HTTP access—either IP address, IP range, or IP mask.

 Note: If you specify a single IP address and then an IP address range containing the single IP address, the IP address range is negated if a user attempts to access a URL at the single IP address.

For more information about identifying the clients, see Identifying Clients and Servers starting on page 44.

To delete a client IP or IP range, click the corresponding Delete icon next to it.

5. Click Add.
The client IP that you have configured is added to the list at the bottom of the **Client IP** tab. Access control settings are evaluated according to the order they appear in the list at the bottom of the **Client IP** tab.

6. Click **Save**.

![TREND MICRO® InterScan® Web Security Appliance User Guide](image)

FIGURE 10. Configure client IP addresses that are allowed HTTP access

Server IP Approved List

To maximize performance of your network, you can configure IWSA to skip scanning and filtering content from specific servers. For example, if you are protecting your intranet server with IWSA in a reverse proxy configuration, you can be reasonably assured that its content is safe and you may want to consider adding your intranet servers to the Server IP Approved List.
After configuring the IP addresses or ranges of trusted servers, the configurations are saved to the `ServerIPWhiteList.ini` configuration file. Overlapping IP ranges are not allowed.

WARNING! Content from servers that you configure on the Server IP approved list will not be scanned or filtered. Trend Micro recommends adding only those servers over which you have close control of the contents.

In ICAP mode, the server IP approved list will only be applied to RESPMOD requests. REQMOD activities (such as URL filtering, Webmail upload scanning, and URL blocking) cannot be bypassed by the server IP approved list for ICAP installations.

To add servers to the Server IP Approved List:

1. Select **HTTP >Configuration > Access Control Settings** from the main menu.
2. Ensure that **Approved Server IP List** tab is active.
3. Check the way you want to specify trusted servers whose content will not be scanned or filtered—either **IP address**, **IP range**, or **IP mask**. For more information about identifying the clients, see Identifying Clients and Servers starting on page 44.
4. Click **Add**.

 The trusted servers that you have configured appears at the bottom of the **Approved Server IP List** tab.

 To delete a trusted server or range, click the corresponding **Delete** icon next to it.
5. Access control settings are evaluated according to the order they appear in the list at the bottom of the **Approved Server IP List** tab. To change the order that the Server IP Approved List is compared to the requested servers, click the up or down arrows in the **Priority** column.
6. Click **Save**.
Destination Port Restrictions

IWSA can restrict the destination server ports to which clients can connect. HTTP requests to a denied port are not forwarded. This approach can lock down your server and prevent clients from using services such as streaming media applications that contravene your network’s security policies by denying access to the ports used by these services.

The default post-install configuration is to deny all requests, except for those to ports 80 (HTTP), 70 (Gopher), 210 (TCP), 21 (FTP), 443 (SSL), 563 (NNTPS) and 1025 to 65535.
Chapter 3: HTTP Configuration

Note: To enable FTP over HTTP connections for clients to open FTP links in Web pages, IWSA must be able to open a command connection to the FTP server on port 21. This requires allowing access to port 21 on the HTTP access control settings.

For a list of ports used by various applications and services, see http://www.iana.org/assignments/port-numbers.

To restrict the destination ports to which a client can connect:

1. Select HTTP > Configuration > Access Control Settings from the main menu.
2. Ensure that the Destination Ports tab is activated.
3. Choose the Action to perform. Choose Deny to prevent connections to a specific port or port range on a destination server, or Allow to permit connections to a specific port or port range.
4. Check either Port or Port Range and then enter the corresponding port(s).
5. Click Add. The destination port restrictions will be added to the list at the bottom of the Destination Ports tab.
 To delete a destination port or port range to which you’re allowing or denying access, click the Delete icon next to it.
6. Access control settings are evaluated according to the order they appear in the list at the bottom of the Destination Port tab. To change the order that ports appear in the list, click the up or down arrows in the Priority column.
7. Click Save.
FIGURE 12. Port access on destination servers is controlled on the Destination Ports tab

HTTPS Ports

IWSA can restrict which ports can be used to tunnel encrypted HTTP transactions. The default configuration is to allow only HTTPS connections on port 443 (the default HTTPS port) and 563 (the default port for encrypted news groups).

Note: If you need to access the Web console via HTTPS while connecting through IWSA itself, allow access to the IWSA secure console port number (8443 by default).

To restrict the ports that can be used to tunnel encrypted HTTP transactions:

1. Select **HTTP > Configuration > Access Control Settings** from the main menu.
2. Make the HTTPS Ports tab active.
3. Choose the Action to perform—either Deny or Allow.
4. Check either Port or Port Range and then enter the corresponding port(s).
5. Click Add. The destination port restrictions appear at the bottom of the HTTPS Ports tab.
 To delete any HTTPS port access restrictions that you may have configured, click the Delete icon next to the port or port range to remove.
6. Access control settings are evaluated according to the order they appear in the list at the bottom of the HTTPS Ports tab. To change the order that ports are displayed in the list, click the up or down arrows in the Priority column.
7. Click Save.

![FIGURE 13. HTTPS port access can be selectively allowed or denied on the HTTPS Ports tab](image)
Setting Up IWSA ICAP

Perform these configuration steps if you are running IWSA with an ICAP handler.

1. Set up an ICAP 1.0-compliant cache server.
2. Flush existing cached content from the cache appliance.

Note: The ICAP setup procedures below apply to the ICAP versions listed under *X-Authenticated ICAP Headers Support* on page 3. They are provided for your convenience; consult the native documentation for complete information.

Setting up an ICAP 1.0-compliant Cache Server

Configure an ICAP client (Network Appliance NetCache appliance/Blue Coat Port 80 Security Appliance cache server/Cisco ICAP server) to communicate with the ICAP server.

To set up ICAP for NetCache Appliance:

2. Click the **Setup** tab, then click **ICAP > ICAP 1.0** on the left menu.
3. Click the **General** tab, then select **Enable ICAP Version 1.0**.
4. Click **Commit Changes**.

Note: An error message “icap: This service is not licensed.” appears if you have not provided the required ICAP license key for NetCache.

5. Enter an ICAP license key:
 a. Click the **Setup** tab, and then click **System > Licenses** in the left menu. The **System Licenses** screen opens.
 b. Type your license under the **ICAP license** section.
 c. Click **Commit Changes**.
6. Select the **Service Farms** tab on the **ICAP 1.0** screen, then click **New Service Farm** to add ICAP servers. Assign the service farm name in the **Service Farm Name** field.
 • For response mode, select **RESPMOD_PRECACHE** in the **Vectoring Point** field.
 • For request mode, select **REQMOD_PRECACHE** in the **Vectoring Point** field.

7. Select **Service Farm Enable**.

8. In the **Load Balancing** field, choose the proper algorithm to use for load balancing (if you have more than one ICAP server in the service farm). Clear **Bypass on Failure**.

 Note: Disable **Bypass on Failure** if your priority is to limit virus propagation within your network. Otherwise, enable **Bypass on Failure** to guarantee an unblocked connection to the Internet.

9. Under the **Consistency** field, choose **strong** from the drop-down menu and leave the **lbw Threshold** field empty.

 Note: For multiple ICAP servers within a service farm with **strong** consistency selected, make sure that all ICAP servers have identical `intscan.ini` and other configuration files and the same virus pattern. The service farm will not work properly if the ICAP servers have different configurations.

10. Under the **Services** text box (for response mode), type:

 `icap://ICAP-SERVER-IP:1344/RESP-Service`

 where **ICAP-SERVER-IP** is the IP address of IWSA ICAP for response mode.

11. Under the **Services** text box (for request mode), type

 `icap://ICAP-SERVER-IP:1344/REQ-Service`

 where **ICAP-SERVER-IP** is the IP address of IWSA ICAP for request mode.

12. For multiple IWSA ICAP server services, type the additional entries in steps 10 and 11. For example:

 For response mode,
For request mode,
icap://ICAP-SERVER1-IP:1344/REQ-Service on
icap://ICAP-SERVER2-IP:1344/REQ-Service on

13. Click Commit Changes.
14. Click the Access Control Lists tab, then select Enable Access Control Lists.
15. Type “icap (Service Farm name of the ICAP Server) any” in HTTP ACL.
16. Click Commit Changes.
17. To configure scanning FTP over HTTP traffic, go to Access Control List and add “icap (service farm name)” into the FTP ACL field.

To set up ICAP for the Blue Coat Port 80 Security Appliance:

Log onto the Web console by typing https://SERVER-IP:8082 in the address bar of your Web browser.

Note: The procedure for setting up ICAP on a Blue Coat appliance may vary depending on the product version.

1. Select Management. Type the logon user name and password if prompted.
2. Click ICAP in the left menu, then click the ICAP Services tab.
4. In the ICAP service name field, type an alphanumeric name. Click Ok.
5. Highlight the new ICAP service name and click Edit. The Edit ICAP Service name screen opens.
6. Type or select the following information:
 a. The ICAP version number (that is, 1.0)
 b. The service URL, which includes the virus-scanning server host name or IP address, and the ICAP port number. The default ICAP port number is 1344.
Chapter 3: HTTP Configuration

- Response mode:
 icap://{ICAP-SERVER-IP}:1344

- Request mode:
 icap://{ICAP-SERVER-IP}:1344/REQ-Service
 where ICAP-SERVER-IP is the IP address of IWSA ICAP.

c. The maximum number of connections (ranges from 1-65535). The default value is 5.

d. The connection time-out, which is the number of seconds the Blue Coat Port 80 Security Appliance waits for replies from the virus-scanning server. The range is an interval from 60 to 65535. The default time-out is 70 seconds.

e. Choose the type of method supported (response or request modes).

f. Use the default preview size (bytes) of zero (0).

g. Click Sense settings to retrieve settings from the ICAP server (recommended).

h. To register the ICAP service for health checks, click Register under the Health Check Options section.

7. Click Ok, then click Apply.

Note: You can edit the configured ICAP services. To edit a server configuration again, select the service and click Edit.

8. Add the response or request mode policy.

 The Visual Policy Manager requires the Java 2 Runtime Environment Standard Edition v.1.3.1 or later (also known as the Java Runtime or JRE) from Sun™ Microsystems, Inc. If you already have JRE on your workstation, the Security Gateway opens a separate browser window and starts the Visual Policy Manager. The first time you start the policy editor, it displays an empty policy.

 If you do not have JRE on your workstation, a security warning window opens. Click Yes to continue. Follow the instructions.

 To add the response mode policy:

 1. Select Management. Type the logon user name and password if prompted.
2. Click Policy on the left menu, then click the Visual Policy Manager tab.
3. Click Start. If the Java Plug-in Security Warning screen appears, click Grant this session.
4. On the menu bar, click Edit > Add Web Content Policy. The Add New Policy Table screen opens.
5. Type the policy name under the Select policy table name field. Click OK.
7. Choose the ICAP service name under the ICAP Service/Cluster Names field. Enable Deny the request under the On communication error with ICAP service section. Click OK, then click OK again.
8. Click Install Policies.

To add the request mode policy:
1. Follow steps a to e in the previous procedure.
3. Choose the ICAP service name under the ICAP Service/Cluster Names field. Enable Deny the request under the On communication error with ICAP service section. Click OK, then click OK again.
a. Click **Install Policies**.

![Figure 14](image.png)

FIGURE 14. Configure both the request and response mode ICAP services. To check the current policy, go to the Policy screen, click the Policy Files tab, and then click Current Policy.

To set up Cisco CE ICAP servers:

IWSA supports Cisco ICAP servers (CE version 5.1.3, b15). All ICAP settings are performed through a command line interface (CLI); there is no user interface associated with the Cisco ICAP implementation.

1. Open the Cisco CE console.
2. Type `config` to enter the configuration mode.
3. Type `icap?` to display a list of all ICAP-related commands.
4. Create a response modification service, by typing

   ```
   icap service RESPMOD SERVICE NAME
   ```

 This takes you into the ICAP service configuration menu. Type `?` to display a list of all available commands. Type the following commands:

   ```
   server icap://ICAP SERVER IP:1344/resp (to assign a server type)
   vector-point respmod-precache (to assign the proper vector point type)
   error-handling return-error (to assign the proper error-handling type)
   enable (to enable the ICAP multiple server configuration)
   ```

5. Type `exit`.
6. Create a request modification service, by typing

 icap service REQUESTMOD SERVICE NAME

 This command takes you into the ICAP service configuration menu. Type ? to
display a list of all available commands. Issue the following commands:

 server icap://ICAP SERVER IP:1344/REQ-Service (to assign a
 server type)

 vector-point reqmod-precache (to assign the proper vector point
type)

 error-handling return-error (to assign the proper error-handling
type)

 enable (to enable the ICAP multiple server configuration)

7. Type exit.

8. For additional configuration steps, type the following:

 icap append-x-headers x-client-ip (to enable X-client headers for
 reports)

 icap append-x-headers x-server-ip (to enable X-server headers for
 reports)

 icap rescan-cache ISTag-change (to turn on ISTAG rescan for
 updates)

 icap bypass streaming-media (to exclude streaming media from ICAP
 scanning)

 icap apply all (to apply all settings and activate ICAP type)

 show icap (to display current ICAP configuration at root CLI menu)

Configuring Virus-scanning Server Clusters

For the Blue Coat Port 80 Security Appliance to work with multiple virus-scanning
servers, configure a cluster in the Security Gateway (add the cluster, and then add the
relevant ICAP services to the cluster).

 To configure a cluster using the Web console:

 1. Select Management.

 Type the logon user name and password if prompted.
2. Click ICAP on the left menu, then click the **ICAP Clusters** tab.

3. Click **New**.

 The **Add ICAP Cluster** screen opens.

4. In the **ICAP cluster name** field, type an alphanumeric name and click **Ok**.

5. Highlight the new ICAP cluster name and click **Edit**.

 The **Edit ICAP Cluster name** screen opens.

6. Click **New** to add an ICAP service to the cluster.

 The **Add ICAP Cluster Entry** screen opens. The pick list contains a list of any services available to add to the cluster. Choose a service and click **Ok**.

7. Highlight the ICAP cluster entry and click **Edit**.

 The **Edit ICAP Cluster Entry name** screen opens. In the **ICAP cluster entry weight** field, assign a weight from 0-255. Click **Ok**, click **Ok** again, and then click **Apply**.

Deleting a Cluster Configuration or Entry

You can delete the configuration for an entire virus-scanning server cluster, or you can delete individual entries from a cluster.

Note: Do not delete a cluster used in a Blue Coat Port 80 Security Appliance policy if a policy rule uses a cluster name.

To delete a cluster configuration using the Web console:

1. Select **Management**. Type the logon user name and password if prompted.

2. Click ICAP on the left menu, then click the **ICAP Clusters** tab.

3. Click the cluster you want to delete. Click **Delete**, then click **Ok** to confirm.

Flushing Existing Cached Content from the Appliance

There is a potential risk of infection from content cached to the NetCache appliance, Blue Coat Port 80 Security Appliance, or the Cisco ICAP servers before IWSA ICAP started scanning HTTP traffic. To safeguard against this possibility, Trend Micro recommends flushing the cache immediately after configuring IWSA ICAP. All new requests for Web content are then served from the Internet and scanned by IWSA.
ICAP before caching. Scanned content is then cached on the NetCache appliance, Blue Coat Port 80 Security Appliance, or the Cisco ICAP servers. The NetCache appliance, the Blue Coat Port 80 Security Appliance, or the Cisco ICAP servers serve future requests for the same Web content by your network users. Since the request is not sent to the Internet, download time is accelerated.

To flush the cache in NetCache:
1. Click the **Utilities** tab, then click **Cache Objects** on the left menu.
2. Click **Flush** under the **Flush the Cache** section.

To flush the cache in the Blue Coat Port 80 Security Appliance:
1. Select **Management**. Type the logon user name and password if prompted.
2. Click **Maintenance**.
3. Click the **Tasks** tab and click **Clear**. Click **OK** to confirm.

To flush the cache in the Cisco ICAP server:
1. Telnet to Cisco CE.
2. At the root CLI menu, type `cache clear`.
3. Press Enter.

Enabling “X-Virus-ID” and “X-Infection-Found” Headers

IWSA can return two optional headers from the ICAP server whenever a virus is found: the “X-Virus-ID” and the “X-Infection-Found” headers. Neither of these headers is returned by default for performance reasons, since many ICAP clients do not use these headers. They must be enabled in the IWSA Web console.

- “X-Virus-ID” contains one line of US-ASCII text with a name of the virus or risk encountered. For example:

 X-Virus-ID: EICAR Test String

- “X-Infection-Found” returns a numeric code for the type of infection, the resolution, and the risk description.

For more details on the parameter values, see:
To enable the X-Virus-ID header:
1. From the main menu, click HTTP > Configuration > Proxy Scan Settings.
2. In the ICAP Settings, select Enable 'X-Virus ID' ICAP header and/or Enable 'X-Infection-Found' ICAP header.
Policies and User Identification Method

InterScan Web Security Appliance is able to apply different HTTP virus scanning, Applets and ActiveX security, URL filtering, IntelliTunnel, and access quota policies to different individuals or groups on your network. In this way, security policies can be customized based on your business need to handle potentially malicious code, view certain categories of Web content or to prevent the consumption of excessive bandwidth for Web browsing.

Topics in this chapter include the following:

- How policies work and the two IWSA default policies—the Global Policy and the Guest Policy
- Enabling the guest port for applying guest policies
- Configuring the user identification method
- Configuring a policy's scope using the three user identification methods
How Policies Work

Different security settings can be configured for different users or groups on your network, based on the type of files or Internet resources they need to access. Some examples of the practical application of different security policies are the following:

- **Virus scanning:** Your organization’s acceptable use policy may generally prohibit clients from downloading audio or video files. However, there may be some groups within your company who have a legitimate business purpose for receiving these types of files. By configuring several virus scanning policies, you can apply different file blocking rules in HTTP virus scanning policies for different groups within your company.

- **Applets and ActiveX security:** To prevent clients from running applets that could intercept sensitive information and transmit it over the Internet, you may want to configure a policy for most of your company that prevents applets from connecting to their originating servers. However, if there are users in your company who have a legitimate business purpose to run these sorts of applets (for example, to get quotations through a Java applet stock price ticker), another policy could be configured and applied to a sub-set of your client base.

- **URL filtering:** To discourage your employees from engaging in non-work-related Web surfing, you may want to configure a Global Policy that blocks access to Web sites in the “gambling” category. However, you might need to configure another policy that permits access to these types of sites so your sales organization can learn more about prospects in the gaming industry.

- **Access quotas:** IWSA allows you to configure access quota policies to limit the volume of files that clients can download during the course of a day, week, and month, to control the amount of bandwidth that your organization uses. For those employees who have a legitimate business need to browse the Internet extensively, you can configure another policy granting them unlimited Internet access.

- **IWSA** enables you to block communication provided by certain Instant Message (IM) protocols and certain authentication connection protocols.

In addition to being able to define custom policies that apply to specific users, IWSA is pre-configured with two default policies, the “Global Policy” and the “Guest Policy,” to provide a baseline level of HTTP virus scanning, Applets and ActiveX security, IntelliTunnel security, and URL filtering. (The Guest Policy is supported only when IWSA runs in HTTP Forward Proxy mode with LDAP enabled.)
Default Global and Guest Policies

InterScan Web Security Appliance has default global and guest policies for the following HTTP activities: HTTP Scan, Applets and Active X, URL Filtering, and IntelliTunnel.

- **Global Policy**—For all clients who access through IWSA. This is configured under [HTTP > Configuration > Proxy Scan Settings](#).
- **Guest Policy**—For those clients, typically temporary workers, contractors, and technicians who proxy through IWSA using a special guest port (default port = 8081). The guest account is disabled by default; enable the guest account and port under [HTTP > Configuration > Proxy Scan Settings](#) after first enabling LDAP ([HTTP > Configuration > User Identification](#)).

Note: By default, there is no access quota control for clients who access IWSA through the default listening port; thus there is no pre-configured Global Access Quota Policy.

About the Guest Policy

The guest port is a feature that’s available when the administrator has configured IWSA to run in HTTP Forward Proxy mode using LDAP “User/group name via proxy authorization” as the user identification method. The administrator can opt to open the second listening port so that users who do not have accounts in an organization’s directory server (for example, contract personnel or visiting vendors) can still access the Web. When IWSA is running in HTTP Forward Proxy mode, the default port values are 8080 for user logon residing in a designated directory server configured on IWSA, and 8081 for guest users. The Guest Policy is the only policy applied to guest users.

For more information about enabling the “User/group name” user identification method, see [User/Group Name Via Proxy Authorization](#) starting on page 71.
Enabling the Guest Port

In order to enable Internet connectivity to network users who are not in the LDAP directory and apply guest policies, open a guest port for Web clients to communicate with IWSA.

To enable the guest port:
1. Select HTTP > Configuration > User Identification from the main menu.
2. From the User Identification screen, select User/group name via proxy authorization and then enter the designated directory server (s) of choice.
3. Click Save.
4. Select HTTP > Configuration > Proxy Scan Settings from the main menu.
5. From the Proxy Scan Settings screen, check Enable guest account.
6. Click Save.

Deploying Policies

After configuring a policy, the settings are written to the database after you click Save. Clicking Deploy Policies Now applies the new policy configuration immediately. Otherwise, the policy changes go into effect when IWSA reads the information from the database after the time intervals specified under Policy Deployment Settings (in minutes) on the Administration > IWSA Configuration > Database screen.

Note: When policies are being applied, either after the cache expiration interval or from clicking Deploy Policies Now, HTTP and FTP connections will be interrupted for a short time (ten seconds).

Configuring the User Identification Method

You need to configure how IWSA identifies clients to define the scope of HTTP virus scanning, URL filtering, Applets and ActiveX security, IntelliTunnel security, and access quota policies. Your choice of user identification method also determines how security events are traced to the affected systems in the log files and reports.
IWSA provides three user identification methods to identify clients and apply the appropriate policy:

- IP address (default option)
- Host name (modified HTTP headers)
- User/group name via proxy authorization (LDAP)

IP Address

The IP address is the default identification option and requires the following:

- Client IP addresses are not dynamically assigned via DHCP
- Network address translation (NAT) is not performed on the network path between the affected system and IWSA

If the local network meets these conditions, you can configure IWSA to use the IP address user identification method.

When using the IP address identification method, the scope of scanning policies is defined by defining a range of IP addresses, or a specific IP address, when adding or editing a policy.

To enable the IP address user identification method:

1. Select **HTTP > Configuration > User Identification** from the main menu.
2. From the User Identification screen, select **IP address**.
3. Click **Save**.
FIGURE 15. Identification methods are used to configure the policy’s scope and identifying clients in the logs.
Host Name

The host name identification method requires that clients use Internet Explorer on the Windows platform. In addition to defining a policy’s scope by specifying the user’s host name(s) when defining accounts to which a policy applies, the Host name (modified HTTP headers) user identification option logs the MAC address and Windows machine name to the security event logs.

By default, only the host name portion of the host name/MAC address combination is stored in IWSA for certain types of logs, such as the URL Access Log and reports, and is used to match policies. If you want to use both the host name and MAC address for user identification, edit intscan.ini and change `use_mac_address=no` to `use_mac_address=yes` in the `[user-identification]` section.

Note: Applet-filtering messages show the client IP address (and not the host name) since even when using Internet Explorer, the HTTP request is submitted by the Java plug-in, not the browser; therefore, Internet Explorer cannot add the special header to the request.

Host name identification relies on information included in HTTP headers by Internet Explorer. In order to utilize this identification option, a modification to the end user's Windows Registry must be made. This modification will cause the hostname of the end user’s PC to be included (in encrypted format) in any HTTP request sent by Internet Explorer. IWSA includes a utility program, `register_user_agent_header.exe`, to make this registry modification. The utility must be executed once on each PC in the network—it does not need to be run again unless the hostname of the PC is changed.

You will find the `register_user_agent_header.exe` file in `\Programs\register_user_agent_header\` on the IWSA CD.

Be aware of the following limitations:

- End users must be using Microsoft Windows OS.
- End users must be browsing with Internet Explorer.
- The `register_user_agent_header.exe` utility must have been executed once on the end user’s desktop.
• The context which executes `register_user_agent_header.exe` must have write permissions for the registry key, \`HKLM\Software\Microsoft\Windows\CurrentVersion\Internet Settings\User Agent\Post Platform`.

To enable the Host name identification method:

1. Select **HTTP > Configuration > User Identification** from the main menu.
2. Select **Host name (modified HTTP headers)**.
3. Click **Save**.

Note: Before your users will be able to access the Internet, and for IWSA to apply the correct policy, clients will have to run the client registration utility.

Client Registration Utility

The **Host name (modified HTTP headers)** user identification option requires that you run a Trend Micro-supplied program on each Windows client before clients connect to IWSA and access the Internet. The program file is `register_user_agent_header.exe` and is located in the installation tar package file. An effective way to deploy this program to your clients is to invoke it from a logon script for the local Windows domain.

The program works by modifying a registry entry:

```
(HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\Current Version\Internet Settings\User Agent\Post Platform)
```

that Internet Explorer includes in the User-Agent HTTP header. You can find the identifying information logged under the **User ID** column in various log files. It alters Windows configuration values to include the MAC address of the client system and the machine name that made the HTTP requests. The MAC address is a unique and traceable identification method and the machine name is an additional and helpful identifier.

After running the `register_user_agent_header.exe` utility, a new registry value is created under the

```
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\Current Version\Internet Settings\User Agent\Post Platform
```
key called IWSA:<host_name>/<MAC address>, where <host_name> and <MAC address> correspond to the client that ran the utility.

User/Group Name Via Proxy Authorization

IWSA can integrate with the following LDAP servers, and supports both the LDAP two and three protocols:

- Microsoft™ Active Directory 2000 and 2003
- Linux™ OpenLDAP Directory 2.2.17
- Sun Java System Directory Server 5.2 (formerly Sun™ ONE Directory Server)
LDAP Authentication Method

When you enable the **User/group name via proxy authorization** method, clients are required to enter their network logon credential before accessing the Internet. The following table shows which LDAP authentication methods can be used with each of the supported LDAP servers:

<table>
<thead>
<tr>
<th></th>
<th>Kerberos</th>
<th>Simple authentication</th>
<th>NTLM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microsoft Active Directory 2000 and 2003</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Linux OpenLDAP 2.2.17</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>Sun Java System Directory Server 5.2 (formerly Sun™ ONE Directory Server)</td>
<td>no</td>
<td>yes</td>
<td>no</td>
</tr>
</tbody>
</table>

Note: To use the Digest-MD5 authentication method with the Sun Java System Directory Server 5.2, all passwords must be stored as clear text in the LDAP directory.

Choose **Simple** from the **LDAP Authentication Method** area of the **User Identification** page (**HTTP > Configuration > User Identification**) to have IWSA send the user's credential (used in the Admin account) as plain text for the initial LDAP connection only.

For increased security protection, IWSA uses the advance authentication method (Kerberos or Digest-MD5) for all subsequent user logon authentications from IWSA to the LDAP server.

TABLE 1. Authentication methods for supported LDAP servers
LDAP Communication Flows

When clients request Internet content, they are prompted to enter their network credential. Simple authentication sends the network credential via clear text. Advanced authentication uses a Kerberos server as a central secure password store. Therefore, the benefit of using Kerberos is a higher degree of security. After the client’s credential is authenticated with a Kerberos Server, a special encrypted “ticket” certified by the Kerberos server is used to access IWSA and the Internet.

FIGURE 16. LDAP communication flow using Kerberos authentication

Configuring LDAP Settings

If you want to use the user/group name via proxy identification method and configure policies that are linked to your network’s LDAP server, first configure your LDAP settings.

Note: If you want to apply the Guest Policy for those network users who are not in your LDAP directory, enable the guest account and configure the guest port (default = 8081) that will receive those requests on the IWSA device. For more information about enabling the guest account and configuring the guest port, see *Enabling the*
Guest Port starting on page 66. If the guest port is not enabled, only users in the LDAP directory can browse the Internet.

To configure IWSA to use the user/group name via proxy identification method:

1. Select HTTP > Configuration > User Identification from the main menu.
2. Under the User Identification Method section, check User/group name via proxy authorization.
3. Click the Select LDAP vendor link.
4. In the secondary browser window, select the LDAP vendor that you are using from the list of supported LDAP servers.

![Configure LDAP Connection](image)

FIGURE 17. Choose your directory (LDAP) server’s vendor in the Configure LDAP Connection screen

Note: In case future versions of Microsoft Active Directory modify the schema, IWSA supports changing the attribute names that make up a user’s distinguished name. If you’re using either Microsoft Active Directory 2000 or 2003, you should select the Default settings option.

5. In the Configure LDAP Connection secondary window, click Save to confirm your choice of LDAP vendor.
6. On the **User Identification** configuration screen, enter the **LDAP server hostname** using its FQDN (Fully Qualified Domain Name). Entering the LDAP server hostname’s IP address is also acceptable, but FQDN format is recommended due to an incompatibility between Kerberos servers and identifying LDAP servers using their IP address.

7. Enter the **Listening port number** used by the LDAP server that you have chosen (default = 389). If your network has multiple Active Directory servers and you have enabled the Global Catalog (GC) port, change the listening port to 3268.

 Note: If you enable the Global Catalog in Active Directory, you may need to configure your firewall to allow communication through port 3268.

8. Enter the **Admin account** and **Password** for a credential with at least read authority to the LDAP server. If the domain is `us.example.com`:
 - For Microsoft Active Directory, use the UserPrincipalName for the admin account, for example, `NT_Logon_ID@us.example.com`.
 - For OpenLDAP and the Sun Java System Directory Server 5.2, enter the Distinguished Name (DN) for the admin account (for example, `uid=LOGON_ID,ou=People,dc=us,dc=example,dc=com`).

9. Enter the **Base distinguished name** to specify from which level of the directory tree you want IWSA to begin LDAP searches. The base DN is derived from the company’s DNS domain components; for example, LDAP server `us.example.com` would be entered as `DC=example, DC=com`.
 If you’re using Active Directory servers with the Global Catalog (GC) port enabled, use the root domain of the Global Catalog-enabled Active Directory; for example, use `dc=example,dc=com`.

10. Select the LDAP authentication method to use—either **Simple** or **Advanced**. If you opt for **Advanced** authentication, the following authentication methods are used:
 - Microsoft Active Directory and OpenLDAP: Kerberos
 - Sun Java System Directory Server 5.2 (formerly Sun™ ONE Directory Server): Digest-MD5
Additionally, configure the following parameters to use Advanced authentication:

- Default Realm
- Default Domain
- **KDC and Admin Server:** The hostname of the Kerberos key distribution server. If you’re using Active Directory, this is typically the same host name as your Active Directory server.
- **KDC port number:** Default port = 88

 When using NTLM to authenticate with KDC(s) on a different forest through Internet Explorer or using IWSA to do referral chasing with Active Directory, Trend Micro recommends enabling “Use HTTP 1.1 through proxy connections.” This setting can be found on the Internet Explorer **Tools** menu >**Internet Options** > **Advanced** tab. Enabling this setting prevents Internet Explorer from cutting off the “Keep-Alive connection” setting. Note that using NTLM is only supported in HTTP Proxy mode with Microsoft Active Directory.

11. In the event a client cannot authenticate using the LDAP and/or Kerberos server that you specify, you can configure IWSA to check other LDAP and/or Kerberos servers on your network. Check **Enable Referral Chasing** and then click the **Primary referral server** and **Secondary referral server** links. Enter the information for the other LDAP servers.

Note: If you are using Active Directory servers and have enabled the Global Catalog port (default = 3268), then IWSA referral chasing configurations are not supported. IWSA uses a different mechanism to query Active Directory servers when the Global Catalog port is enabled, thus configuring referral servers is redundant.
12. To verify the information has been entered correctly and IWSA can communicate with the LDAP servers that you configured, click **Test LDAP Connection** on the **User Identification** page. A message box appears, indicating that you have successfully contacted the LDAP server.

13. Click **Save**.

LDAP Query Matching Across Main and Referral Servers

When adding users or groups to a policy's scope using the “User/group name via proxy authorization” identification method, IWSA initially searches the main LDAP server. If no matching entries are found, the search is extended to the Primary Referral Server and the Secondary Referral Server. However, if entries matching the search string are found in the main LDAP server, the query will not return matches in the Primary and Secondary Referral servers.

For example, assume the following:
- Main LDAP server contains entries “John Smith” and “John Jones”
- Primary referral server contains entry “John Watson”
- Secondary referral server contains “John Carter Rubin”
A query for “John” will only return “John Smith” and “John Jones” since matching entries exist in the main LDAP server and the search will not extend to the referral servers. However, a query for “John Carter” will extend down to the secondary referral server and return “John Carter Rubin” since no matching entries exist in the main or primary referral servers.

Cross Domain Active Directory Object Queries

Trend Micro recommends using the Global Catalog port (3268) as the IWSA LDAP communication port when using Microsoft Active Directory. Using port 3268 enables cross domain group nesting object queries. This applies when an object’s attribute on one domain refers to another object residing on a different domain (for example, cross-domain user or group membership that resides on different domains in a forest).

For retrieving cross-domain group object attribute(s), Trend Micro recommends creating groups with the “Universal” Group Scope to ensure that cross-domain group membership within an Active Directory forest is included in the Global Catalog.

Note: In order to configure IWSA to listen on port 3268, the Microsoft Active Directory server that IWSA uses should have the Global Catalog enabled.

Because the member attribute is not replicated to the Global Catalog for all group types, and because the memberOf attribute derives its value by referencing the member attribute (called back links and forward links, respectively), search results for members of groups, and groups in which a member belongs, can vary. Search results depend on whether you search the Global Catalog (port 3268) or the domain (port 389), the kind of groups that the user belongs to (global groups or domain local groups), and whether the user belongs to universal groups outside the local domain.

For more information, search for the article “How the Global Catalog Works” at http://www.microsoft.com.

Configuring the Scope of a Policy

Whether configuring HTTP virus scanning, Applets and ActiveX security, URL filtering, IntelliTunnel security, or access quota policies, the first step is the same—to configure the policy’s scope by identifying the client users to which the policy
The following three procedures describe how to select the accounts using the IP address, Host name (modified HTTP headers) and the User/group name via proxy authorization user identification methods.

Note: Even if you configure IWSA to use the Host name (modified HTTP headers) or User/group name via proxy authorization user identification method, you can always specify clients by entering an IP address or IP address range.

Before adding a policy and configuring its scope, set the user identification method. See *Configuring the User Identification Method* starting on page 66 for more information.

Configuring Policies Using IP Addresses

Configuring policies using the clients’ IP addresses is the simplest identification method and is always available, regardless of the user identification method you have configured to use.

To configure a policy’s scope using the IP address user identification method:

1. From the main menu, click **HTTP** and choose the type of policy to create (either **Scan Policies**, **Applets and ActiveX Policies**, **URL Filtering Policies**, **IntelliTunnel Policies**, or **Access Quota Policies**).
2. In the screen that corresponds to the type of policy selected, click **Add**.
3. Type a descriptive **Policy name**.
 - Policy names that include references to the users or groups to which they apply (for example, “Virus Policy for Engineers” or “URL Filtering Policy for Researchers”) are easily recognizable.
4. Select the users to which this policy applies by typing the upper and lower bounds of a contiguous range of IP addresses in the **From** and **To** fields. Alternatively, type a single **IP address**. Click the corresponding **Add** button to add the addresses to the policy.
5. When you have named your new policy and defined the IP address(es) to which it applies, click **Next** to proceed with the other policy settings.

![Trend Micro™ InterScan™ Web Security Appliance](image)

FIGURE 19. Configure referral servers if the user credential exists on a different directory server other than the one configured. This is an exception that exists if IWSA is configured to use the Global Catalog port 3268 for Microsoft AD, where referral server configurations do not apply.

Configuring Policies Using Host Names

All clients must run a Trend Micro-supplied utility before clients will be subject to a policy that uses the host name (modified HTTP headers) identification method. For more information, see **Client Registration Utility** starting on page 70.
To configure a policy's scope using the client host names:

1. From the main menu, click HTTP and then choose the type of policy to create (either Scan Policies, Applets and ActiveX Policies, URL Filtering Policies, IntelliTunnel Policies, or Access Quota Policies).
2. In the screen that corresponds to the type of policy that you selected, click Add.
3. Type a descriptive Policy name.
4. Select the users to which this policy will apply by typing the Host name of the client and clicking Add.

Repeat typing the host names and clicking Add until the Type/Identification table on the right side of the screen shows all the clients to which the policy applies.

FIGURE 20. Configuring a policy's scope using the host name user identification method
5. When you have named your new policy and defined the account(s) to which it applies, click **Next** to proceed with configuring the rest of the policy.

Configuring Policies Using LDAP

Before configuring a policy using users or groups from your LDAP server, set the user identification method and enter the details of your LDAP server. For more information, see *Configuring LDAP Settings* starting on page 73.

To configure a policy’s scope using users and groups from an LDAP server:

1. From the main menu, click **HTTP** and then choose the type of policy to create (either **HTTP Scan Policies**, **Applets and ActiveX Policies**, **URL Filtering Policies**, **IntelliTunnel Policies**, or **Access Quota Policies**).
2. In the screen that corresponds to the type of policy that you selected, click **Add**.
3. Type a descriptive **Policy name**.
4. To query your LDAP directory for users or groups to add to your policy:
 a. Check either **User** or **Group**.
 b. Type the first part of the user or group name in the **Name** field and click **Search**.
 c. When the list box displays users or groups that match your search criteria, highlight the user or group to add to the policy and click **Add**.
5. Repeat adding users or groups until your policy’s scope is complete.
6. When you have named your new policy and defined the account(s) to which it applies, click **Next** and proceed with configuring the rest of the policy.

Login Accounts

Up to 128 users can access IWSA using assigned access rights. When in the application, users can make configuration changes that are recorded in the audit log (see *Audit Log* on page 206).

If you have a team of security administrators who are responsible for different functions and who may also have help desk privileges, then assigning them access rights can be beneficial to your organization. To manage IWSA, these users can have different logins with different privileges.
Access rights can also give you the ability to audit what is being changed in IWSA. If you have the need to comply with certain government agency standards, then this function can be critical.

About Access Rights

There are three levels of access:

- Full access—Users have complete and unrestricted access to the system. They can read and modify any settings accessible through the console, including creating, deleting, and modifying user accounts. This is the default access for new users.
- Read only—Users cannot make any configuration changes; they can only view configurations, logs, and reports. They can change their own password.
- Reports only—Users can only view the Summary pages and scheduled reports. They can generate logs and real-time report queries and change their own password.

Adding a Login Account

To add a login account:

1. From the main menu, click Administration > Login Accounts.
2. In the Login Accounts page, click Add.
3. In the Add Account page, complete the necessary information:
 - Username—The name of the user assigned to the login account.
 - Password—Should be a mixture of alphanumeric characters between 4 and 32 characters long. Avoid dictionary words, names, and dates.
 - Description—The field that briefly describes the login account.
 - Access Rights—See About Access Rights starting on page 83.
4. Click Save. The new login account appears in the Login Accounts page.
Changing a Login Account

To change a login account:

1. From the main menu, click Administration > Login Accounts.
2. Click on the desired username.
3. In the Edit Login Account page, change the necessary information:
 • Username—The name of the user assigned to the login account.
 • Password—Should be a mixture of alphanumeric characters between 4 and 32 characters long. Avoid dictionary words, names, and dates.
 • Description—The field that briefly describes the login account.
 • Access Rights—See About Access Rights starting on page 83.
4. Click Save. The changed login account appears in the Login Accounts page.
Chapter 5

Configuring HTTP Scanning

This chapter describes how to configure HTTP virus scanning and applets and ActiveX security policies. Topics in this chapter include the following:

• Enabling HTTP scanning and applets and ActiveX security
• Understanding HTTP scanning settings and their effect on Web browsing performance
• Creating and modifying HTTP virus scanning, and Applet/ActiveX security policies
• Configuring HTTP virus scanning, including file type blocking, compressed file handling, large file handling, spyware and grayware scanning rules, and scan actions
• Understanding how Applet/ActiveX security works
• Configuring Java applet security, including digital signature and certificate status, applet instrumentation, and re-signing
• Configuring ActiveX security rules
• Configuring applet and ActiveX security settings
Enabling HTTP Scanning and Applets and ActiveX Security

You can enable or disable HTTP scanning from the Summary page of the IWSA Web console.

Note: In addition to enabling HTTP scanning and Applet/ActiveX security, ensure that HTTP traffic is turned on (see Enabling the HTTP Traffic Flow starting on page 32). Otherwise, clients cannot access the Internet.

To enable HTTP scanning and Applets and ActiveX Security:

1. Open the IWSA Web console and click Summary in the left-hand column.
2. If HTTP Traffic: is shown as a red circle with a white “x”, click on the adjacent Turn On link to start the IWSA HTTP proxy daemon.
3. Click HTTP in the left-hand column and select Policies under HTTP Scan.
4. At the top of the page, check Enable virus scanning and Enable Web reputation, then click Save.
5. In the left-hand column, select Policies under Applets and ActiveX.
6. At the top of the page, check Enable Applet/ActiveX security, then click Save.
HTTP Scanning Performance Considerations

There are trade-offs between performance and security while scanning HTTP traffic for malicious content. When users click a link on a Web site, they expect a quick response. This response, however, may take longer as gateway antivirus software performs virus scanning. Some of the requested files may be large, and determining whether the file is safe requires downloading the entire file before it is relayed to the user. Content may also consist of many small files. In this case, the user’s wait is the result of the cumulative time needed to scan the files.

One way to improve the user’s experience is to skip scanning large files or files that are not likely to harbor viruses. For example, you can skip all files with an extension of “.gif”, or all files with a MIME type.

When configured to skip scanning a file due to its MIME content-type, IWSA will attempt to determine the file’s true-file type and match it to the claimed MIME type before skipping it. If the file’s true-file type maps to a different MIME type than indicated in the Content-type header attached to the transaction, the file will be...
scanned. Unfortunately, there is not always a clear mapping between file types and MIME types. If IWSA cannot map the true-file type to a MIME type, it will be skipped according to the Content-type header as configured.

You can exclude files from scanning based on extension. Trend Micro recommends that you minimize the list of MIME content-types to skip. In general, relying on the scan engine to decide whether a file should be scanned is safer than trying to pick out which file types you want to skip yourself. Firstly, the content-type HTTP header may not accurately represent the true type of the content to download. Secondly, some types that you may think are safe to skip (for example, text) may not really be safe (since scripts are text, and may possibly be malicious). One more area where you may want to use MIME content-type skipping is where you are consciously making a trade-off in safety versus performance. For example, a lot of Web traffic is text, and the IWSA scan engine will scan all that traffic because the content may contain scripts, which are potentially malicious. But if you are confident that you are browsing an environment that cannot be exploited by Web scripts, you may choose to add text/* to your MIME content-type skip list so IWSA does not scan Web pages.

Malicious code within a small file can quickly spread throughout a network. Malicious code that requires a large file for transport will propagate more slowly, because the file containing malicious code will take longer to transmit. Therefore, it is important to screen small files efficiently and completely.

Note: Performance may be adversely affected if the main policy for ActiveX scanning directs that all PE (windows executable) files must be scanned (not just COM objects, of which ActiveX controls are a subtype), or if all unsigned PE files are to be blocked. The performance impact occurs because the Javascan daemon (which enforces policy for these files, as well as Java Applets) is invoked more often.

Creating and Modifying HTTP Virus Scanning Policies

In addition to the default global and guest policies, you can create customized HTTP scanning policies for specified members of your organization.

To create a new virus scan policy:

1. Choose **HTTP > HTTP Scan > Policies** from the main menu.
2. Select **Enable virus scanning** to enable virus scanning.

3. Select **Enable Web Reputation** to enable Web Reputation.
 Web Reputation must be enabled at the global level in order for it to be used at the policy level.

4. Click **Add**.

5. Type a descriptive **Policy name**.
 Policy names that include references to the users or groups to which they apply (for example, “Virus Policy for Engineers” or “URL Filtering Policy for Researchers”) are easy to remember.

6. Select the users to which this policy will apply.
 The options on this page depend upon the user identification method that you are using—either **IP address**, **Host name (modified HTTP headers)** or **User/group name via proxy authorization**. For more information about configuring the user identification method and defining the scope of a policy, see *Configuring the User Identification Method* starting on page 66 and *LDAP Query Matching Across Main and Referral Servers* starting on page 77.

 Note: Regardless of the user identification method you have configured, you can always enter IP addresses of the clients to which the policy will apply.

7. When you have named your new policy and defined the account(s) to which it applies, click **Next** to proceed with defining HTTP virus scanning rules.

To modify an existing HTTP scanning policy:

1. Click **HTTP > HTTP Scan > Policies** from the main menu.

2. Click the name of the policy to modify.

3. Modify the Web Reputation rule, virus scanning rule, the spyware scanning rule, and the scanning action.
 The specified scanning action applies to all specified rules.

To add or remove users from an existing HTTP scanning policy:

1. Click **HTTP > HTTP Scan > Policies** from the main menu.

2. Click the desired scan policy account.

3. From the **Scan Policy: Edit Policy** (Account tab) screen, either add or remove a user.
To add a user, specify a user IP address in the **IP address** field or specify a range of users in the **From** and **To** fields under **IP range**. Click **Add** after specifying a user or range of users.

To remove a user, click the trash can icon next to the user.

To enable a HTTP scanning policy:

- In any HTTP scanning policy configuration page, select **Enable policy**.

Specifying Web Reputation Rules

Web Reputation rules are created at the policy level.

To specify Web Reputation rules:

1. Ensure that Web Reputation is enabled at the global level.

 Web Reputation must be enabled at the global level in order for it to be used at the policy level (**HTTP > HTTP Scan > Policies | Enable Web Reputation checkbox**).

2. Ensure that Web Reputation is enabled at the policy level.

 Using the **Add** or **Edit** option for the **HTTP > HTTP Scan > Policies | Web Reputation Rule** page, ensure that the **Use Web Reputation rule in this policy** check box is selected. This check box is selected by default.

3. Specify the URL blocking sensitivity level.

 Upon receiving the Web Reputation score, IWSA determines whether the score is below or above the threshold. The threshold is defined by sensitivity level as configured by the user. Medium is the default sensitivity setting. This setting is recommended because it blocks most Web threats while not creating many false positives.

4. Either accept or disable the anti-pharming and anti-phishing detections.

 By default, anti-pharming and anti-phishing detections are enabled. See **Anti-phishing and Anti-pharming Detection** on page 5-90.

Anti-phishing and Anti-pharming Detection

Phishing issues emails designed to steal private information from you. These emails contain URLs which direct you to imposter Web sites where you are prompted to update private information, such as passwords and credit card numbers, social security number, and bank account numbers.
Pharming attempts to redirect you to imposter Web sites with the intention of stealing private information (usually financial related). Pharming compromises a DNS server by planting false information into the server, which causes a user’s request to be redirected to an unintended location. Unfortunately, the Web browser displays what appears to be the correct Web site.

Note: Since the source of anti-phishing/pharming detection is Web Reputation and anti-phishing/pharming functions in an anti-threat capacity, it is therefore part of the Web Reputation Rule for a policy. And since Web Reputation at the policy level cannot function until enabled at the global level, anti-phishing/pharming is also disabled when Web Reputation is disabled globally.

Web Reputation Settings
Web Reputation settings involve specifying the following:
- Query method
- URL exceptions
- Whether to provide feedback on infected URLs to Trend Micro
- Whether to evaluate Web Reputation in an evaluative mode (no URLs are blocked)

Enabling and Disabling Web Reputation
IWSA allows you to enable/disable Web Reputation at the global level and at the policy level. If you disable Web Reputation at the global level, then it is automatically disabled at the policy level.

To enable and disable Web Reputation:
1. Click HTTP > HTTP Scan > Policies from the main menu.
2. From the Scan Policies screen, click the Enable Web Reputation check box to either enable or disable Web Reputation.

Specifying the Web Reputation Query Method
The default Web Reputation query method is DNS and encrypted HTTP. IWSA queries the domain level (DNS) first and then the path/file level (HTTP). This is the
default setting. The **Encrypted HTTP** setting encrypts all queries making it the more secure option.

To specify the Web Reputation query method:

1. Select **HTTP > Configuration > Query Method Settings** from the main menu.
2. From the Query Method Settings screen, either accept the default query method or select **Encrypted HTTP**.

Specifying Web Reputation Exceptions

Web Reputation exceptions can be defined by entering the whole Web site URL, a URL keyword, a partial URL, or by importing an existing exception list of URLs.

To specify Web Reputation exceptions:

1. Select **HTTP > HTTP Scanning > Settings | Web Reputation Approved List** tab from the main menu.
2. Either specify the match type or import the URL exception list. The default option is **Web site** (exact Web site).
3. Click **Save**.

Once you have specified a URL as an exception to Web Reputation, you still have the option to include it in Web Reputation by selecting the URL in the Approved List and clicking **Remove**. Click **Remove All** to include all URLs in the Approved List part of Web Reputation.

Managing Web Reputation Results

IWSA provides two options for managing Web Reputation results: (1) Provide feedback on infected URLs to help improve the Web Reputation database and (2) monitor the effectiveness of Web Reputation without affecting existing Web-access policies. One, all, or options can be selected.

Feedback Option

In addition to the current dynamic URL Blocking List, VSAPI scan results can be fed back to the URL Local Cache and an external backend Rating Server. The Trend Micro Feedback Engine (TMFBE) provides a feedback mechanism for IWSA to send back VSAPI scan results to the backend Rating Server. The Feedback option is enabled by default.
Note: When using Upstream Proxy mode, you may need to configure the proxy server to explicitly allow the IWSA IP address to access trendmicro.com.

Negative Results

If the scan result from VSAPI is negative, the infected URL will be sent back to the following locations:

- Dynamic URL Blocking List
- URL Local Cache with an adjusted Web Reputation score.
- TMFBE feedback buffer with VirusName and IntelliTrap Flag. When this buffer reaches ten entries or five minutes have passed from the last feedback, these URLs will be sent to the backend Rating Server in a batch (each URL is sent sequentially).

Positive Results

If the scan result from VSAPI is positive, the URL in question is saved in the URL local cache. This prevents the same URL from getting scanned by VSAPI twice.

Monitor Only Option

The Monitor Only option gives you the opportunity to evaluate Web Reputation results. With this option selected, you are able to monitor Web Reputation results from the URL Blocking Log or Security Risk Report. The results only include the URLs filtered by Web Reputation, anti-phishing and anti-pharming. Because you are only monitoring Web Reputation results, no URL blocking occurs and URLs are passed to clients.

By default, the Monitor Only option is off.

Clearing the URL Cache

When a user attempts to access a URL, IWSA retrieves information about this URL from a remote database—the Web Reputation database—and stores the retrieved information in a local URL cache. Having the Web Reputation database on a remote server and building the local URL cache with this database information reduces the overhead on IWSA and improves performance.
The following are the information types the URL cache can receive from the Web Reputation database for a requested URL:

- Web category
- Pharming and phishing flags used by anti-pharming and anti-phishing detection
- Web Reputation rating results used to determine whether or not to block a URL (see Specifying Web Reputation Rules on page 90)

The URL cache keeps frequently accessed URLs in cache for quick retrieval. Clear the cache only if a new URL query is necessary or if the cache size is affecting performance.

Note: Clearing the cache stops and restarts the http scanning daemon. This may interrupt IWSA service.

To clear the URL cache:

1. From the main menu, click **HTTP > Configuration > URL Cache**.
2. Click **Clear Cache**.

HTTP Virus Scanning Rules

IWSA administrators can configure which file types to block and scan, and how compressed and large files are handled.

Specifying File Types to Block

You can identify the types of files to block for security, monitoring, or performance purposes. Blocked files are not received by the requesting client, nor are they scanned—requests to retrieve a blocked file type are not executed. You have the option of blocking file types such as Java applets, executables, Microsoft Office documents, audio/video files, images or other files types that you specify.

To specify which file types to block:

1. While adding or editing a policy, under **Block These File Types**, select the file types to block.
2. In the **Other file types** field, type the other file types to block, using a space to delimit multiple entries. See Appendix A, Contact Information and Web-based
Resources for how to enter other file types that can be blocked, along with their corresponding MIME content-type.

Specifying File Types to Scan

IWSA is equipped with the following HTTP scanning capabilities:

- IntelliScan
- True-file type detection
- IntelliTrap

Note: For the highest level of security, Trend Micro recommends scanning all files.

About IntelliScan

Most antivirus solutions today offer you two options in determining which files to scan for potential risks. Either all files are scanned (the safest approach), or only those files with certain file name extensions (considered the most vulnerable to infection) are scanned. But recent developments involving files being “disguised” by having their extensions changed has made this latter option less effective. IntelliScan is a Trend Micro technology that identifies a file’s “true-file type,” regardless of the file name extension.

Note: IntelliScan examines the header of every file, but based on certain indicators, selects only files that it determines are susceptible to virus infection.

About True-file Type

When set to scan true-file type, the scan engine examines the file header rather than the file name to ascertain the actual file type. For example, if the scan engine is set to scan all executable files and it encounters a file named family.gif, it does not assume the file is a graphic file and skip scanning. Instead, the scan engine opens the file header and examines the internally registered data type to determine whether the file is indeed a graphic file, or, for example, an executable that has been deceptively named to avoid detection.

True-file type scanning works in conjunction with Trend Micro IntelliScan, to scan only those file types known to be of potential danger. These technologies can mean a
reduction in the overall number of files that the scan engine must examine (perhaps as much as a two-thirds reduction), but it comes at the cost of potentially higher risk. For example, .gif and .jpg files make up a large volume of all Web traffic, but they cannot harbor viruses, launch executable code, or carry out any known or theoretical exploits. However, this does not mean that they are entirely safe. It is possible for a malicious hacker to give a harmful file a “safe” file name to smuggle it past the scan engine and onto the network. The file could not run until it was renamed, but IntelliScan would not stop the code from entering the network.

To select which file types to scan:

IWSA can scan all files that pass through it, or just a subset of those files as determined by true-file type checking (IntelliScan) or the file extension. In addition, individual files contained within a compressed file can also be scanned.

1. Select the files to scan:

 - To scan all file types, regardless of file name extension, select All scannable files. IWSA opens compressed files and scans all files within. This is the most secure, and recommended, configuration.
 - To use true-file type identification, select IntelliScan. This configuration scans file types that are known to harbor viruses by checking the file’s true-file type. Since checking the true-file type is independent of the filename’s extension, it prevents a potentially harmful file from having its extension changed to obscure its true-file type.
 - You can explicitly configure the types of files to scan or skip, based on their extensions, to work around possible performance issues with scanning all HTTP traffic. However, this configuration is not recommended because the file extension is not a reliable means of determining its content.

To scan only selected file types (Trend Micro does not recommend this setting), select Specified file extensions and then click the list. The Scan Specified Files by Extension screen opens. The default extensions list shows all file types that are known to potentially harbor viruses. This list is updated with each virus pattern file release. On the Scan Specified Files by Extension screen, add or exclude additional extensions in the Additional Extensions and Extensions to Include fields.

Enter the extension to scan or exclude from scanning (typically three characters), without the period character. Do not precede an extension with a wildcard (*) character, and separate multiple entries with a semicolon.
Click **OK** when you are finished. The screen closes.

2. You can configure IWSA to selectively bypass certain MIME content-types. Some file types, such as RealAudio or other streaming content, begin playing as soon as the first part of the file reaches the client machine and will not work properly with the resulting delay. You can have IWSA omit these file types from scanning by adding the appropriate MIME types to the **MIME content-types to skip** list on the **Virus Scan Rule** tab. Type the MIME content-type to bypass in the **MIME content-type to skip** field (for example, image, audio, application/x-director video, and application/pdf).

Note: Trend Micro recommends minimizing the list of MIME content-types to skip to reduce the risk of virus infection. Also, Trend Micro does not recommend skipping any MIME content-types when large file handling is enabled, since it’s possible for a MIME content-type to be forged.
FIGURE 22. The recommended extensions to scan are updated with each new pattern file

About IntelliTrap

IntelliTrap detects potentially malicious code in real-time, compressed executable files that arrive with HTTP data. Virus writers often attempt to circumvent virus filtering by using different file compression schemes. IntelliTrap provides heuristic evaluation of compressed files that helps reduce the risk that a virus compressed using these methods will enter a network through the Web. IntelliTrap has the following options:

- Can be enabled or disabled in the Virus Scan Rule tab for each scan policy. (IntelliTrap is enabled by default.)
- Malicious, compressed executable files receive the actions specified in the Action tab.
To enable / disable IntelliTrap:

- Click HTTP > HTTP Scan > Policies | policy | Virus Scan Rule tab > Enable IntelliTrap check box.

For more IntelliTrap information, see IntelliTrap Pattern and IntelliTrap Exception Pattern Files on page 20.

Priority for HTTP Scan Configuration

IWSA scans according to the following priority:

1. MIME content-types to skip
2. File types to block
3. File types to scan

Configuring Compressed File Scanning Limits

Compressed file scanning limits can be configured using the Add or Edit option for the HTTP > Scan Policies screen. IWSA opens and examines the contents of compressed files according to the criteria specified in the HTTP virus scanning configuration screen. IWSA decompresses the files according to the configurable limits (number of files in the compressed archive, size of the compressed file, number of compressed layers, and the compression ratio).

To configure the compressed file scanning limits:

Under Compressed File Handling, select from the following two options:

- **Block all compressed files:** All requests to download compressed files will not be fulfilled.

- **Block compressed files if...:** Requests to download compressed files that exceed the configured criteria will not be fulfilled. Type values for the following parameters:
 - Decompressed file count exceeds (default is 10000)
 - Size of a decompressed file exceeds (default is 200MB)
 - Number of layers of compression exceeds (range is 0-20; default is 10)
 - Compression ratio of any file in the archive exceeds (x %) (range is 1-100; default is 100)
Note: “100” percent file compression ratio means that there is no limit on the compressed files setting; whereas, “0” percent file compression ratio means that all compressed files will be blocked.

A compressed file that meets any of the tests will be blocked at the gateway and not scanned. For example, suppose your settings appear as follows:

<table>
<thead>
<tr>
<th>Compressed File Handling</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C. Block all compressed files</td>
<td></td>
</tr>
<tr>
<td>R. Block compressed files if:</td>
<td></td>
</tr>
<tr>
<td>Decompressed file count exceeds:</td>
<td>10000</td>
</tr>
<tr>
<td>Size of a decompressed file exceeds:</td>
<td>200 MB</td>
</tr>
<tr>
<td>Number of layers of compression exceeds:</td>
<td>10 (0-20)</td>
</tr>
<tr>
<td>Compression ratio of any file in the entire file exceeds (as %):</td>
<td>100% (1-100)</td>
</tr>
</tbody>
</table>

FIGURE 23. “Decompression percent” can be used to prevent a denial-of-service (DoS) attack against the IWSA device

A compressed file that has more than 10 layers of compression or contains more than 10000 files will not pass through the gateway.

Handling Large Files

For larger files, a trade-off must be made between the user’s experience and expectations, and maintaining security. The nature of virus scanning requires doubling the download time (that is, the time transferring the entire file to IWSA, scanning the file, and then transferring the entire file to the client) for large files. In some environments, the doubling of download time may not be acceptable. There are other factors such as network speed, and server capability that must be considered. If the file is not big enough to trigger large-file handling, the file will be scanned as a normal file.

Consider configuring large file handling if your users experience browser time-outs when trying to download files. There are two large file scanning options:

Scan Before Delivering (Progress Page)

When IWSA is configured to use the Scan before delivering scanning option, requested files are not passed to the client until scanning is finished. A progress page
is generated to prevent the browser from timing out and to inform the user that scanning is in progress to prevent them from thinking that the connection is hung.

Note: For large file handling, IWSA uses the progress page. The progress page uses JavaScript and a pop-up window to display the download progress. If your desktop security policy has pop-up blocking enabled or JavaScript disabled, then the progress page does not function and scanning is prevented.

In order for the progress page to work, IWSA needs to know to which externally visible IP address the clients will connect. Using 127.0.0.1 causes a problem. If a message about the progress page appears, add the machine IP address to `iscan_web_server` so that the host name does not resolve to 127.0.0.1 (for example, `iscan_web_server=1.2.3.4:1812`) or modify the `/etc/hosts` file.

![Figure 24. “Scan before delivering” large file handling progress window](image)

Deferred Scanning

When IWSA is configured to use the **Deferred scanning** option, part of the file is passed to the requesting client while IWSA scans the remainder of the file. The partial file remains in the client’s temporary directory until scanning concludes and the last byte of the file is delivered.

Instead of using a specified data size, IWSA uses a percentage to define how much data is downloaded at a time. At most every two seconds, IWSA sends a specified
percentage of received data to the browser. The last chunk of data will not be larger than 4KB and is sent to the browser before the scan is finished.

For the data download percentage, you can specify either 20, 40, 60, 80, or 100. The default percentage is 60. The actual percentage of data sent to the browser can be much smaller than the percentage specified.

Note: Large file handling does not work when using the Blue Coat Port 80 Security Appliance in ICAP mode. If IWSA is configured as an HTTP proxy in-line with the Blue Coat appliance, however, large file handling will function.

External data received by IWSA is sent to the browser in smaller chunks without scanning. The last chunk is sent to the browser to complete the download only after the entire set of data is received and scanned. Sending smaller chunks not only maintains the IWSA-Web browser connection, but also keeps end-users posted of the download progress.

Large file handling can be set using the **Add** or **Edit** option for the **HTTP > HTTP Scan > Policies | Virus Scan Rule**.

FIGURE 25. For special handling of large files, there are two options to choose from: (1) scan before delivering and (2) deferred scanning.

Scanning of large files can be turned off by choosing **Do not scan files larger than** to reduce performance issues when downloading very large files and you have control over their integrity.
To disable scanning large files:

- Under **Large File Handling**, check **Do not scan files larger than** and then configure the file size over which files will not be scanned. The default is 2048MB.

 Disabling scanning of any files, even large ones, is not recommended, since it introduces a security vulnerability into your network.

To use large file handling for HTTP scanning:

1. In the **Large File Handling** section, select **Enable special handling**, and then type the file size (in KB or MB) to be considered a large file.

 The default value is 128KB.

2. Select the type of large file-handling to use:

 - **Scan before delivering**: Shows progress while scanning, and then loads the page afterwards (default setting)

 - **Deferred scanning**: Loads part of the page while scanning; stops the connection if a virus is found

3. Click **Save**.

Important Notes for Large File Handling

- Large file special handling only applies to HTTP scanning, FTP scanning, and FTP over HTTP via the HTTP proxy. It does not apply to FTP over HTTP for ICAP traffic. Users may experience timeout issues while downloading large files using FTP over HTTP.

- When using the scan-after-delivering-large-file-handling method, IWSA does not delete files subsequently found to be infected in the first affected client.
• Violations of the large file handling policy will display a user notification in the requesting client’s browser. For example:

![Figure 26. Notification after completing scanning and downloading the file](image)

Quarantined File Handling

If you choose to quarantine files that IWSA detects as malicious, you can optionally choose to encrypt the files before moving them to the quarantine folder by checking **Encrypt quarantined files**. This will prevent the files from being inadvertently executed or opened. Note that encrypted files can only be decrypted by a Trend Micro Support engineer.

When you’ve completed configuring the HTTP virus scanning rules on the **HTTP > Virus Scan Add/Edit** policy screen, click Next to move on to the spyware/grayware scanning rules.

Spyware and Grayware Scanning Rules

In addition to computer viruses, the IWSA pattern files include signatures for many other potential risks. These additional risks are not viruses, since they do not replicate and spread. However, they can perform unwanted or unexpected actions, such as collecting and transmitting personal information without the user’s explicit knowledge, displaying pop-up windows, or changing the browser’s home page.

IWSA can be configured to scan for the following additional risks:
• **Spyware**: Software that secretly collects and transmits information without the user’s explicit knowledge or consent

• **Dialers**: Software that secretly dials a telephone number, typically an international or pay-per call number, through the user’s modem

• **Hacking tools**: Software that can be used for malicious hacking purposes

• **Password cracking programs**: Software designed to defeat computer passwords and other authentication schemes

• **Adware**: Software that monitors and collects information about a user’s browsing activities to display targeted advertisements in the user’s browser or through pop-up windows

• **Joke programs**: Programs that mock computer users or generate some other sort of humorous display

• **Remote access tools**: Programs designed to allow access to a computer, often without the user’s consent

• **Others**: Files that do not fit into the other additional risks classifications. Some of these may be tools or commercial software that have legitimate purposes, in addition to having the potential for malicious actions

To scan for spyware, grayware, and other non-virus additional risks:

1. Under **Scan for Additional Threats** on the **HTTP > Scan Policies > Virus Scan Policy Add/Edit** screen or the **Spyware/Grayware Scan Rule** tab on the **FTP > Scan Rules > FTP Scanning** screen, select the types of additional risks to be detected. To scan for all additional risks that have signatures in the pattern file, check **Select all**.
2. Click **Next** to configure the actions against security risks.

![Scan Policy: Add Policy](image)

FIGURE 27. Spyware, grayware and additional threat scan configuration

Setting the Scan Action for Viruses

After configuring the HTTP virus scanning rules, configure the actions that IWSA will take if an infected file, password-protected or macro-containing file is detected.

Scan Actions

There are four actions that IWSA can take in response to the outcome of virus scanning:

- **Choose **Delete** to delete an infected file at the server. The requesting client will not receive the file. This action can be applied to the **Infected files**, **Uncleanable files**, and **Password-protected files** scan events.**

- **Choose **Quarantine** to move a file (without cleaning) to the quarantine directory (by default):**

 `/etc/iscan/quarantine`

 The requesting client will not receive the file. This scan action can be applied to all four of the scan events. You can optionally choose to encrypt files before sending them to the quarantine directory. For more information, see **Quarantined File Handling** starting on page 104.
• Choose **Clean** to have IWSA automatically clean and process infected files. The requesting client will receive the cleaned file if it is cleanable, otherwise the uncleanable action is taken. This action can be applied to the **Infected files** and **Macros** scan events. For macro-containing files, the Clean action strips the macro from the file, whether the macro is a virus or benign, to protect your network before an updated virus pattern is released and deployed.

• Choose **Pass** to send the file to the requesting user. This action can be applied to the **Uncleanable files**, **Password-protected files**, and **Macros** events. The Pass action should always be used for Macros events, unless you want to strip or quarantine all macro-containing files during a virus outbreak.

Note: Trend Micro does not recommend choosing the **Pass** scan action for uncleanable files.

Scan Events

After scanning, you can configure actions for the four possible scanning outcomes:

- **Infected files**: Files determined to be infected with a virus or other malicious code. Available actions are **Delete**, **Quarantine** or **Clean** (recommended and default action).

- **Uncleanable files**: Depending on the type of virus or malicious code infecting a file, the scan engine may not be able to clean some files. Available actions are **Delete** (recommended and default action), **Quarantine**, and **Pass**.

- **Password-protected files**: Files that cannot be scanned because they are either password-protected or encrypted. The infection status of these types of files cannot be determined. Available actions are **Delete**, **Quarantine** (recommended and default action), and **Pass**.

- **Macros**: Microsoft Office files that contain macro program code. Since many of the fastest spreading viruses are macro viruses, you can quarantine all macro-containing files during the early stages of a virus outbreak in order to block all files before the new virus pattern is added to the pattern file and deployed to your environment. Available actions are **Quarantine**, **Clean**, and **Pass**. Unless there is a need to quarantine or strip macros during a virus outbreak before an updated pattern file is released, the action for Macro should always be set to **Pass**.
Adding Notes to Your Policy

To record notes about your policy, type them into the **Note** field at the bottom after configuring the actions taken against files detected by IWSA.

When you have completed configuring the scan actions to apply to your policy, click **Save**. Click **Deploy Policies** to immediately apply the policy; otherwise, the policy will be applied after the database cache expires.

IntelliTunnel Security

IWSA uses IntelliTunnel technology to block undesirable instant messaging (IM) and authentication connection protocols tunneled through port 80. It uses a dynamic, updatable pattern file to distinguish normal browser traffic from other protocols communicating over port 80. Currently, the pattern file can identify three popular types of IM traffic when this traffic is tunneled through port 80.

Since IWSA is an HTTP/FTP proxy, it can only scan traffic that is submitted to it directly (via a browser's proxy setting), or via a network device (in bridge and ICAP
modes). This means that IWSA will only be able to intercept HTTP (port 80), HTTPS (port 443), and FTP (port 21) traffic. Traffic to other ports will not be routed through IWSA and, thus, cannot be blocked by it. In order to ensure that IM traffic is routed through IWSA, the clients must be configured to use HTTP tunneling with IWSA because the proxy and outbound access through all other ports must be disabled at the firewall.

This section describes the protocols used for IM and authentication connections. It also describes how to edit and create an IntelliTunnel policy.

Protocols Used in Instant Messaging and Authentication Connections

IWSA can filter HTTP traffic for IM protocols and authentication connections protocols and, based on a specified policy, block certain content from entering the LAN. You can create multiple policies to have IWSA apply different filter criteria to different user groups within your organization.

Policy enforcement is only possible when the IM clients are forced to use HTTP tunneling. This requires that the site is set up to allow only external network access via HTTP. This means internal clients are prevented from connecting directly to external servers of any form, on any port. This is part of the firewall configuration, not IWSA.

About Instant Messenger Protocol

IWSA can currently block IM services using current commercial instant messenger protocols, including OSCAR (AIM and ICQ), MSNP (Microsoft Messenger), and YMSG (Yahoo Messenger).

About Authentication Connections

IWSA can block authentication attempts for Google Talk, Jabber IM (using jabber.org as the authenticator), AIM, and ICQ.

Note: Due to the way that Google authenticates users, the Gmail application uses the same authentication as the Google Talk product. This means that blocking Google Talk will also block Gmail.
IntelliTunnel cannot, however, block authentication connections in ICAP mode.

Editing an IntelliTunnel Policy

When editing a policy, you can edit the account information or policy information, or both.

To edit IntelliTunnel policy information:

1. Select HTTP > IntelliTunnel from the main menu.
2. Click the desired policy name.
3. From the IntelliTunnel: Edit Policy page (Rule tab), select or de-select the desired option(s).
4. Click Save.

To edit IntelliTunnel account information:

5. Click the Account tab.

 You can also access the Account tab by clicking on the desired account name on the IntelliTunnel Policies page.
6. Specify a policy name.
7. Specify an IP range and/or an IP address and then click Add.

 IWSA applies the IM and authentication connections rules to any IP range and IP address that you specify. If you are using LDAP, then you may see more descriptive information in the Add table, such as the user name.
8. Click Save.

Creating a New IntelliTunnel Policy

Creating a new IntelliTunnel policy is a two-step process: specify an account and specify IM/authentication connections security rules.

To create a new IntelliTunnel policy:

1. Select HTTP > IntelliTunnel from the main menu.
2. On the IntelliTunnel Policies page, click the Add link.
4. Specify an IP range and/or an IP address and then click **Add**. IWSA applies the IM and authentication connections rules to any IP range and IP address you specify. If you are using LDAP, you may see more descriptive information in the Add table, such as the user name.

5. Click **Next**.

6. From the “2. Specify IntelliTunnel Security Rules” view of the IntelliTunnel: **Add Policy** page, select the desired option(s).

 See the IWSA online help for a complete description of the IM and authentication connections protocols.

7. Click **Finish**.

Java Applet and ActiveX Security

IWSA Applets and ActiveX scanning blocks malicious Java applets and unsecured ActiveX controls at the Internet gateway, preventing them from infiltrating your network and performing malicious acts on client workstations.

IWSA employs a tiered technology approach that operates on both the Internet gateway server and on desktops.

- On the server, IWSA prefilters Java applets and ActiveX controls based on whether they are digitally signed, the validity of the signature, and the status of the certificates used to do the signing.

- On client workstations, IWSA code, inserted into Java applets, monitors the behavior of the applets in real time and determines whether their behavior is malicious according to a pre-configured security policy.
The figure below illustrates how IWSA scans and blocks malicious applets and ActiveX objects.

![Diagram of Java applet security](image)

FIGURE 29. How Java applet security works

How Applets and ActiveX Security Works

As applets and ActiveX objects pass through the gateway, the validity of their digital signatures are checked. In addition, IWSA monitors applets in real-time on the client workstations and issues an alert if any prohibited operations are attempted.

Step 1. Filtering Applets & ActiveX at the Server

As Java applets and ActiveX controls are downloaded to the proxy server, IWSA filters them according to the following criteria:

For ActiveX Objects

If ActiveX security is enabled, IWSA checks the signatures of CAB files and executable COM objects (of which ActiveX controls are a type) that are digitally signed. It will then examine the digital certificates contained in the signature and compare them with those in the IWSA-specific certificate database. ActiveX objects not signed, invalidly signed, or signed using an unknown root Certification Authority (CA) certificate can be blocked. In their place, the system creates a new HTML page...
containing a warning message. This new page is then delivered to client workstations.

![Diagram of ActiveX security process]

FIGURE 30. How ActiveX security works

For Java Applets

IWSA filters Java applets based on whether they are digitally signed, the validity of the signature, and the status of the certificates used to do the signing.

If signature verification is enabled, IWSA will verify the signatures of digitally signed applets. Those not signed, signed using an unknown or inactive root Certification Authority (CA) certificate, signed using a flagged certificate, or invalidly signed can be blocked. They are then replaced with a new applet that displays a warning message. If certificate checking is disabled, the system accepts all Java applets regardless of the certificates they carry.

IWSA keeps a database of recognized certificates, which is used in the filtering process. This database is automatically updated to include any unrecognized certificate the system encounters. You can delete entries from the database and enable or disable entries on the [HTTP > Applets and ActiveX > Manage Digital Certificates](#) screen (see [Managing Digital Certificates for Applet Processing](#) starting on page 129).

For Java Applets, IWSA first performs Steps 2 and 3 below before sending the applets to the clients.
Step 2. Instrumenting Applets

IWSA analyzes the applet code to determine any potentially dangerous actions that it may perform. It then adds instrumentation code (that is, instructions that notify the user of certain programming operations) to monitor and control these actions.

During instrumentation, IWSA inserts monitoring code around suspicious instructions and then attaches the security policy assigned to the intended recipients. Depending on how IWSA is configured, this security policy may vary from one client to another, based on the domain they belong to or their IP addresses. IWSA supports creating multiple policies that can be mapped to different groups of users in your network. IWSA uses the inserted monitoring codes and the attached security policy to monitor the applet’s behavior in real-time and to determine whether or not this behavior is malicious.

Note: The process of instrumenting a signed applet renders the signature invalid. Therefore, the signature is stripped, leaving it unsigned. IWSA can optionally re-sign the applet if required by the client browser.

Step 3. Optionally Re-signing Instrumented Applets

If configured to do so, IWSA re-signs the instrumented applets using an imported “private key” before sending them to client workstations. Since applets lose their original signatures during the instrumentation process (due to modifications to their original code), you may want to use this feature to ensure that the clients’ Web browsers will run the instrumented applets with the permissions they may require to run correctly.

IWSA supports the import of a “private key”, along with the associated certificate that contains the corresponding “public key,” for use in the re-signing process. You can purchase this key from any of the well-known Certifying Authorities (CAs). Only one re-signing key may be configured for use at any given time.

Note: Re-signing applies only to validly signed applets. If the system is configured to accept unsigned applets, these applets will bypass this process and will be delivered to client workstations immediately after instrumentation.
Step 4. Monitoring Instrumented Applet Behavior

When the applet executes in the browser, the instrumentation is automatically invoked before any potentially dangerous operation is performed. The instrumentation determines whether an action is permitted by comparing it with the attached security policy. If the action is permitted, IWSA then allows the action to take place; otherwise, IWSA notifies the users and gives them the option to allow the behavior, terminate the behavior, or stop the applet.

Enabling Applet/ActiveX Security

To start scanning your HTTP traffic for malicious applets and ActiveX objects, enable this scanning from either the Applets and ActiveX policy page or Summary > Scanning page.

To enable malicious Applets and ActiveX scanning in HTTP traffic:
1. Select HTTP > Applets and ActiveX > Policies from the main menu.
 Alternatively, you can select Summary from the main menu.
2. Check Enable Applet/ActiveX security.
3. Click Save.

Adding and Modifying Applet/ActiveX Scanning Policies

The first step when configuring a new policy is to set the client accounts to which the policy will apply. See Configuring the Scope of a Policy starting on page 78 for more information and procedures for setting a policy’s scope using the three different user identification methods.

All configured policies are listed on the Applets and ActiveX Policies screen available from HTTP > Applets and ActiveX > Policies.
To modify the scope of a policy:

1. Open the Applets and ActiveX Policy screen (HTTP > Applets and ActiveX > Policies from the main menu).

2. Do one of the following:
 - To remove accounts from a policy’s scope, select the users, click Delete and then Save.
 - To add accounts to a policy’s scope, click the Policy Name, switch to the Account tab, add or delete the accounts to which the policy applies, and click Save.

3. Click Deploy Policies. Changes to a policy’s scope do not take effect until the modified policies are deployed.
After configuring the scope of your policies, configure the applet and ActiveX scanning rules.

Configuring Java Applet Security Rules

On the HTTP > Applets and ActiveX > Policies screen, add a new policy or select an existing policy. On the Java Applets Security Rules tab, IWSA can be configured to either block all applets, or to accept and process applets using the security settings you specify.

Signature Status

A digital signature is a way to verify the genuine publisher of an applet. It also allows you to verify that the applet has not been tampered with or otherwise changed since it was published. After analyzing the applet’s signature, IWSA makes one of the following determinations:

• **Valid signature**
• **No signature:** The applet is unsigned.
• **Invalid signature:** The applet’s signature is corrupt or cannot be verified for some reason; for example, no trusted root certificate is found

Checking the signature of an applet is done in two steps. The first is a verification of the integrity of the applet code against data in the signature. The second is a verification of the integrity of the certificates, the “certificate chain,” used to create the signature. For the signature to be considered valid, the certificate chain must end with a certificate known to IWSA that is trusted. The set of these certificates can be viewed and managed by opening the Web console to HTTP > Applets and ActiveX > Digital Certificates > Active Certificates.

Certificate Status

Java applet security rules can apply different actions to applets that have valid signatures, based on their certificate status.

By default, IWSA trusts its active certificates. However, an active certificate can be “flagged” if you no longer want to trust applets that have a flagged certificate in their certificate chain. Flagged certificates continue to be listed as active certificates, though the flagged status is noted.
Instrumentation and Re-signing

Instrumentation is the process through which IWSA adds monitoring and control code to the applet. Since the instrumentation process breaks the applet’s signature, if any, you can alternatively choose to re-sign an applet after instrumentation. This ensures the instrumented applets will execute in the browser and perform operations as expected.

Applet Instrumentation Settings

The purpose of instrumenting applets is to prevent applets from executing prohibited operations on client machines. By default, Java applets processed by IWSA are not allowed to perform the following types of operations:

- **Destructive operations**: Deleting and renaming files
- **Non-destructive operations**: Listing files in a directory or retrieving file attribute information
- **Write**: Writing new or modifying existing files
- **Read**: Reading file contents

Configuring Exceptions

For each of the types of operations that can be selectively allowed or prohibited, you can configure file or folder exceptions where the security policies will not apply.

- To allow a given type of file operation, except when performed by a subset of files, check the **Enable** button next to the file operation. Click the **Exceptions** link. The **Exceptions to File Operations** screen opens. Configure the files and folders where the operation is not allowed.
- To disallow a given type of file operation, except for a subset of files, check the **Disable** button next to the file operation. Click the **Exceptions** link and then configure the files and folders where the operation is allowed.

To configure Java applet processing settings:

1. After setting the scope of your policy, do one of the following:
 - Select **Process Java applets using the following settings** for IWSA to pass, block or instrument the applet based on its signature and certificate status.
 - Select **Block all Java applets** for IWSA to not allow any applets to pass to the clients. If you choose this setting, proceed to step Step 3.
2. For each of the following signature and certificate status, choose the processing action to use (* denotes the default Trend Micro-recommended settings):

- **Valid signature, trusted certificate**: Pass*, Instrument applet (re-sign), Instrument applet (strip signature), Block
- **Valid signature, flagged certificate**: Pass, Instrument applet (re-sign), Instrument applet (strip signature), Block*
- **No signature**: Pass, Instrument Applet*, Block
- **Invalid signature**: Pass, Instrument Applet (strip signature), Block*
3. For each of the four (destructive, non-destructive, write or read) operations that can be selectively enabled or disabled, click the **Enable** or **Disable** button to configure your security policy.

4. Click the **Exceptions** button, and then configure the files or folders that are exceptions to the security policy:

![Java Applet security rule configuration screen](image)
Chapter 5: Configuring HTTP Scanning

a. Enter the Directory/File Path of the files that will not apply to the configured security policy.
 • To configure a specific file path, check Exact file path.
 • To exclude the entire folder’s contents from the security rule, check Include all files in this directory.
 • To exclude all of the folder’s files, plus those in sub-directories, from the security rule, check Include files in this and all sub-directories.

 Note: All file paths are those on the client machine, where the applet will run. The file path format should be in the form required by the operating system running on the client.

b. Click the Add button to add the exceptions to the given security policy.

c. Configure other files or directories to exempt from the applet’s security settings.

d. When you’ve completed configuring your file and folder exceptions, click Save.

![FIGURE 33. Java applet instrumentation settings exception files and folders](image-url)
5. Back on the Java Applet Security Rules tab, to allow applets to bind to ports on the client workstation, select **Bind local ports**.

6. To allow applets to connect to their originating servers, select **Connect to their originating servers**.

7. To allow applets to connect to hosts other than the ones they originated from, check **Enable or Disable** next to **Host connections**, then configure exceptions to the security policy.
 a. Enter the **Host** that will not apply to the configured security policy.
 b. Click the **Add** button to add the exceptions to the given security policy.
 c. Add others host that will not apply to the security policy.
 d. When you’ve completed configuring the hosts that are exceptions to the policy’s security rules, click **Save**.

8. Choose **Create new thread groups** to allow applets to create new thread groups. To disallow this operation, clear it.

9. Choose **Create unlimited active threads** to have IWSA ignore thread activity from applets downloaded to clients on the LAN. Clear the box and specify a limit to restrict the number of threads applets can create at one time.

10. Choose **Create unlimited active windows** to limit the number of active top-level windows applets can open. Enter the number of allowable windows in the provided text box. Clearing this option gives applets the freedom to open as
many windows as they want — just like some malicious Java applets do to annoy users.

11. Enter any optional Note for future reference about this policy.

12. Click Next to continue with configure ActiveX security rules if you are configuring a new Applets and ActiveX policy. If you are modifying an existing policy, click Save.

13. Click Deploy Policies to immediately apply the policy; otherwise, the policy will be applied after the database cache expires.

14. Enter any notes to save pertinent information about this policy, and click Save.

<table>
<thead>
<tr>
<th>Applet Instrumentation Settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allow applets to perform the following file operations:</td>
</tr>
<tr>
<td>Destructive operations:</td>
</tr>
<tr>
<td>Enable (Exceptions)</td>
</tr>
<tr>
<td>Non-destructive operations:</td>
</tr>
<tr>
<td>Enable (Exceptions)</td>
</tr>
<tr>
<td>Write:</td>
</tr>
<tr>
<td>Enable (Exceptions)</td>
</tr>
<tr>
<td>Read:</td>
</tr>
<tr>
<td>Enable (Exceptions)</td>
</tr>
<tr>
<td>Allow applets to perform the following network operations:</td>
</tr>
<tr>
<td>Bind local ports</td>
</tr>
<tr>
<td>Connect to their originating servers</td>
</tr>
<tr>
<td>Host connections:</td>
</tr>
<tr>
<td>Enable (Exceptions)</td>
</tr>
<tr>
<td>Allow applets to perform the following thread and windows operations:</td>
</tr>
<tr>
<td>Create new thread groups</td>
</tr>
<tr>
<td>Create unlimited active threads:</td>
</tr>
<tr>
<td>If disabled, allow maximum threads:</td>
</tr>
<tr>
<td>Create unlimited active windows:</td>
</tr>
<tr>
<td>If disabled, allow maximum windows:</td>
</tr>
</tbody>
</table>

FIGURE 35. Applet Instrumentation Settings

Configuring ActiveX Security Rules

ActiveX security rules can be applied to the two different types of ActiveX controls:

- **Executable cabinet files (*.cab):** An ActiveX control distributed using the Windows native compressed archive format.
Portable executable (PE) files (*.exe, *.ocx, and so on): An executable file format that has "portability" across all 32-bit and 64-bit versions of Windows. For each of these two file types, you can configure security policies to:

- Block all ActiveX controls of that type
- Allow all ActiveX controls of that type
- Verify signatures, and alternatively block invalidly signed or unsigned files

Enter any notes about this policy and then click **Save**.

FIGURE 36. ActiveX security rules configuration
Applet and ActiveX Settings

Applet and ActiveX security policies determine certificate and signature status as configured on the Applet and ActiveX Settings page. For example, IWSA can either attempt to validate signatures, strip the signatures and process all applets as being unsigned, or check the certificate’s revocation status. In addition, IWSA can re-sign applets after instrumentation.

To validate the signature of an ActiveX control, IWSA can check the expiration of the signing certificate, check all certificates in the signing chain (exclusive of the signing certificate) and check the revocation status of the certificate (where a revocation information source is available for a certificate).

To configure how IWSA validates Java applet and ActiveX signatures:

1. Click HTTP > Applets and ActiveX > Settings from the main menu.
2. Complete the settings on the Java Applets and ActiveX Executables tabs.
3. Click Save.

Java Applet Signature Validation

When IWSA processes signed applets, it can handle digital signatures in one of two ways:

- Strip signatures and treat all incoming applets as unsigned applets, a restrictive security setting that treats all applets, signed or unsigned, in the same manner. In a normal client browser environment, the unsigned applet will not have access to the client system’s resources, but it can still produce annoying behavior such as opening many windows.
- Perform full signature validation on the applets.
Adding Certificates for Applet Signature Verification

Java applet signatures are verified using root certificates installed. To see the list of root certificates, select HTTP > Applets and ActiveX > Digital Certificates from the main menu. ActiveX signatures are verified against the root certificates in the IWSA device’s Windows certificate store.

If your environment requires running applets signed with root certificates that are not installed along with IWSA, then add them to the IWSA digital certificate store.

To add a certificate to the IWSA certificate store:

1. Click HTTP > Applets and ActiveX > Digital Certificates from the main menu.
2. On the Active Certificates tab, click Add, select the certificate, and then click Add.
3. Return to the Active Certificates screen and verify that the added certificate appears on the list.

Certificate Expiration
IWSA can be configured to:
• Check that the certificate used to sign the applet has not expired
• Check that the certificates in the certification path are all valid

Untrusted Signature Status
If IWSA is unable to determine whether the certificate should be trusted owing to its certification path, then the applet’s signature status can be set to:
• Unsigned (which means the signature is stripped), or
• Invalid

Revocation Status
Digital certificates can be revoked by their issuer. IWSA can check whether a certificate has been revoked when a status source is available.

If IWSA cannot access the defined status source, you can configure IWSA to set the status of the certificate to Valid, Unsigned (Strip signature), or Invalid.

Applet Re-signing
IWSA can re-sign instrumented applets with your company’s own “private key” before they are sent to client workstations. Since applets lose their original certificates during instrumentation, you may want to re-sign them to ensure that clients’ Web browsers will always accept the applets without any restrictions.

To use the re-signing feature, you need two keys: 1) a “private key” that must be imported into IWSA, and 2) a certificate containing the “public key” equivalent to your “private key” that must be imported into your clients’ Web browsers. The certificate enables the browsers to recognize the signature you affix to instrumented
applets. Without this certificate, these applets will be treated as another unsigned applet—either blocked by the browser or given limited access to system resources.

IWSA supports the PKCS12 key format. If you do not have a key yet, you can purchase one from any of the well-known Certificate Authorities (CAs).

To re-sign applets after instrumentation:

1. On the Java Applets tab of the Applet and ActiveX Settings page (HTTP > Applets and ActiveX Settings), check Re-sign the applets with the following certificate.
2. Type the path or click Browse to navigate to the certificate to use for re-signing.
3. Enter the certificate’s Password.
4. Click Add.
5. Click Save.

ActiveX Signature Validation

To verify whether an ActiveX control is validly signed, IWSA can check the control’s certificate in several ways—for both a Cab file and PE file. This validation includes checking the expiration of the signing certificate, the expiration of all certificates in the signing chain, or by checking the revocation status of the certificate (when a status source is defined).

To configure how IWSA checks the signature status of a signed ActiveX control:

1. Select HTTP > Applets and ActiveX > Settings from the main menu, and click the ActiveX Executables tab.
2. Enable the types of signature checking to use for ActiveX controls:
 - Verify that the signing certificate has not expired
 - Check that all of the certificates in the certifying path have not expired
 - When the certificate’s issuer is defined, verify whether the certificate has been revoked by the issuer
 - Signature timestamps can be checked. If set, a signature with an expired certificate will be considered valid if it has a valid timestamp countersignature.

If IWSA is unable to access the certificate’s issuer, then the status of the signature can be set to either Valid or Invalid.
Managing Digital Certificates for Applet Processing

In order for IWSA to determine that an applet’s signature is trusted, the root Certification Authority (CA) certificate on which the signature is based must be added to the IWSA certificate store.

There are three types of digital certificates that are involved in producing a digital signature:

- The “end” or “signing” certificate, which contains the public key to be used to validate the actual applet signature.
• One or more “intermediate” Certification Authority (CA) certificates, which contain the public keys to validate the signing certificate or another intermediate certificate in the chain
• The “root” CA certificate, which contains the public key used to validate the first intermediate CA certificate in the chain (or, rarely, the signing certificate directly). An otherwise valid signature will be “trusted” by IWSA if the root CA certificate of the signature is known to IWSA, is active, and is not flagged.

If IWSA encounters an unknown certificate during applet signature processing, it saves the certificate in the “inactive” list, along with the URL of the applet that contained the signature. All types of certificates will be collected in this way (signing, intermediate, and root). If required later, a root CA certificate collected this way can be “activated” (made trusted by IWSA) so that the signatures of applets that depend on it can be processed as valid. Intermediate CA and end certificates may be activated, but this will only have an effect if the root certificate is also activated. In other words, activating an intermediate CA or signing certificate does not make them trusted (only root CA certificates can be made trusted), but any certificate may be flagged.

To manage the certificates in the IWSA certificate store, you can perform the following operations:
• **Delete a certificate:** Removes the selected certificate(s) from the certificate store.
• **De-activate a certificate:** Keep the certificate in the IWSA certificate store, but do not trust certificates that use it in their certification path.
• **Activate a certificate:** Make a root CA certificate trusted.
• **Flag the certificate:** Flag all signatures that use the certificate in its certification path.
• **Clear flagged certificate:** Re-instate the trusted status of a certificate that was previously flagged, so that certificates that use the certificate in their certification path will be trusted.

To view existing certificates:
1. Select **HTTP > Applets and ActiveX > Digital Certificates** from the main menu.
2. Switch between the **Active Certificates** and **Inactive Certificates** tabs to see which certificates are already known to IWSA.
To add a trusted certificate:

1. Select HTTP > Applets and ActiveX > Digital Certificates from the main menu.

2. Ensure the Active Certificates tab is active.

3. Click Add.

 The Add Certificates screen opens.

4. Type the path or click Browse to navigate to the certificate to add and click Add.
Note: Certificates are commonly contained in files with the extensions .cer, .der, .crt. Also note that, as stated above, only active root CA certificates are considered trusted, but any active certificate may be flagged.

The screen returns to the Active Certificates tab. The certificate that you added should be visible, along with the type of certificate and its expiration date.

To delete a certificate:
1. Select HTTP > Applets and ActiveX > Digital Certificates from the main menu.
2. Select the certificate(s) to delete.
3. Click Delete.

To de-activate a trusted certificate:
1. Select HTTP > Applets and ActiveX > Digital Certificates from the main menu.
2. Make sure the Active Certificates tab is active.
3. Check the certificate(s) to de-activate.
4. Click De-activate.
5. The certificate(s) that you selected moves to the Inactive Certificates tab.

To activate a certificate:
1. Select HTTP > Applets and ActiveX > Digital Certificates from the main menu.
2. Make sure the Inactive Certificates tab is active.
3. Select the certificate(s) to activate.
4. Click Activate.
5. The certificate(s) that you selected moves to the Active Certificates tab.

To flag a certificate:
1. Select HTTP > Applets and ActiveX > Digital Certificates from the main menu.
2. Make sure the Active Certificates tab is active.
3. Select the certificate(s) to flag.
4. Click **Flag Certificate**.
5. The flagged certificate(s) remains visible on the **Active Certificates** tab, with a red flag in the status column.

To remove a certificate from being flagged:

1. Select **HTTP > Applets and ActiveX > Digital Certificates** from the main menu.
2. Make sure the **Active Certificates** tab is active.
3. Select the flagged certificate(s) to be cleared (certificates with flagged status have a red flag in the **Status** column).
4. Click **Clear Flagged Certificate**.
5. The flagged certificate(s) remains visible on the **Active Certificates** tab, without a red flag in the **Status** column.

Client-side Applet Security Notifications

There are several alert messages that may be displayed in the client’s browser in response to IWSA Java applet security policies.

If an applet is blocked due to its signature or certificate status, the requesting client is presented with a message showing the policy that blocked the applet, along with the reason:

FIGURE 40. Blocked applet notification
If an instrumented applet attempts to perform an operation that is not allowed by a policy’s configuration, a notification displays the disallowed operation and the user is prompted on how to proceed. Available options are:

- **Allow**: The instrumented applet continues to run, including the operations not allowed by the policy.
- **Disallow**: The operation that triggered the Applet security policy is stopped, but the instrumented applet continues to run.
- **Stop Applet**: The instrumented applet is terminated.

FIGURE 41. Applet security violation notification

If the client chooses **Stop Applet**, another notification is displayed to indicate that the applet has terminated.

FIGURE 42. Applet execution termination notification
Access Quotas and URL Access Control

Access quotas limit a client’s bandwidth consumption to a fixed amount per unit of time. URL trusting can improve browsing performance by exempting trusted URLs from scanning and other IWSA operations. URL blocking refuses requests to URLs that you specify or whose patterns are contained in the PhishTrap pattern file.

Topics in this chapter include:

• Using access quota policies to set a limit on client bandwidth consumption
• Overview of URL access control
• Exempting scanning of trusted URLs to improve browsing performance to low-risk sites
• Blocking all access to sites
• Using the PhishTrap pattern file of known phishing sites
• Submitting suspicious URLs to Trend Micro for further analysis
Introduction to Access Quota Policies

The IWSA access quotas Guest Policy limits the HTTP bandwidth used by clients who access the Internet through the IWSA guest port. A policy for other clients can also be defined (there is no access quota Global Policy). If no policy matches the connection, then the client has unlimited access. After modifying access quota policies and saving the policies to the database, the IWSA service in a multiple server configuration environment reloads the policies according to the time-to-live (TTL) value configured on the HTTP Configuration page (Administration > IWSA Configuration > Database).

If the quota is exceeded while making a download, the download is allowed to continue. However, succeeding downloads/browsing requests (before the access quota interval expires) are refused. Users are allowed access again after the access quota interval expires.

Note: For a group quota policy, the quota is for each client within the policy’s scope, and all clients in the same policy have the same quota.

Managing Access Quota Policies

The clients within the scope of an access quota policy, the bandwidth quota and the time interval for the quota’s duration are configurable.

To add an access quota policy:

1. Click HTTP > Access Quota Policies from the main menu.
2. Select Enable access quota control.
3. From the drop-down menu, select the access quota interval—either Daily, Weekly, or Monthly.
 The value for the access quota interval is globally applied to all access quota policies, including all existing policies.
4. Click Save.
5. Click *Add*.
6. Select *Enable policy* and enter the access quota.
7. Select the users to which the policy applies. The options on this page depend upon the user identification method that you are using—either *IP address*, *Host name (modified HTTP headers)*, or *User/group name via proxy authorization*. These settings are configured on the *HTTP>Configuration>User Identification* screens. For more information about configuring the user identification method and defining the scope of a policy, see *Configuring the User Identification Method* starting on page 66.

Regardless of the user identification method you have configured, you can always enter IP addresses of the clients to which the policy will apply.
8. Type some optional notes to record any special information about the policy.
9. Click Save.
10. When returned to the Access Quota Policies page, click Deploy Policies to immediately apply the policy; otherwise, the policy will be applied after the database cache expires.

There may be times when you want to temporarily deactivate a policy, without deleting the settings from the database.
To deactivate a policy:

1. Click HTTP > Access Quota Policies from the main menu.
2. From the Access Quota Policies screen, click the linked item in either the Account or Access quota column to take you to the Edit Policy screen.
3. Clear Enable policy at the top of the screen and click Save.

Disabling the policy will not take effect until the policy cache refreshes, or you click Deploy Policies.

If you no longer have any need for a policy (for example, if the employee using the client leaves your organization), you can either delete the whole policy or users within the policy’s scope from the IWSA database.

To delete a policy:

1. Click HTTP > Access Quota Policies from the main menu.
2. From the Access Quota Policies screen, select the policy and click Delete.

Deleting the policy will not take effect until the policy cache refreshes, or you click Deploy Policies.

Overview of URL Access Control

The InterScan Web Security Appliance can control URL access based on Web Reputation feedback, the optional URL Filtering module, or a combination of both. The combination of Web Reputation and the URL Filtering module is a multi-layered, multi-threat protection solution provided by IWSA.

The optional URL Filtering module grants or denies Web access based on the category to which a URL belongs. Web Reputation grants or denies Web access based on whether the requested URL is a phishing or pharming threat, has hacking potential, or has a reputation score that deems it untrustworthy. Both the optional URL Filtering module and Web Reputation are controlled by the specifications you make in policies.
When a user attempts to access a Web site, the following events occur:

- IWSA checks the requested URL against the URL blocking list and trusted URL list (see *Overview of URL Access Control* on page 139).

 If the URL is found on the URL blocking list, the request is denied. If the URL is found on the URL trusted list, access is granted and no form of access control is done.

- If the URL is not on the blocked or trusted list, IWSA sends the requested URL to Web Reputation for processing.

- From a remote database, Web Reputation retrieves the appropriate URL rating for the URL.

 The rating can either be “high,” “medium,” or “low.” The sensitivity level you specify determines whether or not IWSA blocks the URL (see *Specifying Web Reputation Rules* on page 90).

 If the URL is found on the Web Reputation exception list, IWSA skips the anti-phishing and anti-pharming detection for this URL (see *Specifying Web Reputation Exceptions* on page 92).

- Web Reputation then determines if the requested URL is a phishing or pharming threat and if so, flags the URL accordingly (see *Anti-phishing and Anti-pharming Detection* on page 90).

- The final process of Web Reputation is to determine the category of the URL (see *Direct URL Filter Category Selection* on page 5).

 The category information is used later by the optional URL Filtering module.

- Web Reputation returns to IWSA the URL rating, any phishing or pharming flags, and the URL category.

- If a URL is flagged for phishing or pharming, IWSA blocks access to the Web site.

- Next, if you are using the optional URL Filtering module, this module uses the Web category information for the requested URL to determine if access is permissible.

 If the URL is found on the URL Filtering module exception list, the URL bypasses the category filtering and proceeds to the final step in URL access control (see *URL Filtering Exceptions* on page 162).

 If the category of the requested URL is permitted in the URL Filtering policy, then the URL is passed on to the final step; otherwise, the URL is blocked.
• Finally, based on the Web Reputation URL rating, IWSA determines if the requested URL is below or above the sensitivity level specified in the scan policy.

If the URL is found on the Web Reputation exception list, IWSA skips the sensitivity level checking for this URL (see Specifying Web Reputation Exceptions on page 92).

If the rating falls below the sensitivity level, the requested URL is blocked. However, if the rating is above the sensitivity level, IWSA grants access.

Specifying URL Access Control

IWSA can optionally “trust” some URLs and exempt them from scanning and filtering to improve browsing performance to low risk sites. It can also block access to sites using a user-configured list, or by checking requested sites against the PhishTrap pattern file, a compilation of sites associated with “phishing” schemes or other malicious acts.

Configuring Trusted URLs

IWSA can be configured to trust some URLs and exempt them from scanning and filtering. Since this opens a security risk by allowing unchecked content into your network, configuring a URL as “trusted” must be considered carefully. Since trusted URLs are not scanned, browsing performance is improved. Good candidates for trusting are Web sites that are frequently accessed and contain content you can control (for example, your company’s intranet sites).

If you installed the HTTP stand-alone proxy handler, trusted URLs are exempted from all IWSA modules. If you installed the ICAP proxy handler, REQMOD activities (for example, URL filtering, Webmail upload scanning, and URL blocking) cannot bypass the trusted URLs list.

Trusted URL information is kept in the [URL-trusting], normalLists section of the intscan.ini configuration file.

When configuring trusted URLs, you can specify the sites using the following:
• The Web site, which includes any sub-sites
• Exact-match strings within a requested URL
You can apply exceptions to sites that would otherwise match the criteria for the trusted URL list, so IWSA scans or filters them as usual.

A list of trusted URLs and their exceptions can also be imported from a file, in addition to configuring them through the user interface. Write a comment or title (which IWSA will ignore) at the top of a file that contains a list of Web sites, URL keywords, or strings, and then write one rule per line. Group sites to be blocked under [block] as shown in the following example, and group exceptions under [allow]:

```plaintext
URL Blocking Import File {this title will be ignored}
[block]
www.blockedsite.com*
unwanted.com*
urlkeyword
banned.com/file
banned.com/downloads/
[allow]
www.blockedsite.com/file
www.unwanted.com/subsite/
www.trendmicro.com*
```

Managing your trusted URLs and exceptions:

1. Click HTTP > URL Access Control > Trusted URLs from the main menu.
2. In the Trusted URLs configuration page, select Enable URL trusting.
3. Select how you want to specify the URL to trust:
 - Web site match (including all sub-sites)
 - String match (URL must contain the string)
FIGURE 45. Enter the URLs that will not be scanned

4. Type the URL string to **Match** and click **Trust** to add it to the Trusted URLs list (shown below the **Do Not Scan these URLs** section). To configure exceptions to the trusted URLs list, click **Do Not Trust** and your entry will be entered under **Exceptions to the Trusted URL List**.

5. To remove a trusted URL or exception from your trusted URLs list, highlight the item and click **Remove**. **Remove All** clears all the items.

6. Click **Save**.
To import a list of trusted URLs and their exceptions:
1. Click HTTP > URL Access Control > Trusted URLs from the main menu.
2. Browse or type the name of the file that contains the list of trusted URLs and their exceptions into the Import Trusted list and exceptions field.
3. Click Import. The trusted URLs and their exceptions from the file appear in the appropriate fields on the interface.
4. Click Save.

Blocking URLs
IWSA can block Web sites and URL strings in both ICAP and HTTP proxy mode.

Note: If you have installed the ICAP proxy handler, configure the ICAP client to scan files in pre-cache request mode to make this feature work. The stand-alone proxy requires no additional configuration.

When configuring URLs to block, you can specify the sites using the following:
• The Web site, which includes any sub-sites
• Keyword matching within a URL
• Exact-match strings within a requested URL

You can apply exceptions to the blocked URL list so IWSA allows requests as usual. Using this feature, you can block a given site yet allow access to some of its sub-sites or files. The URL Blocking list (including exceptions) is maintained in the /
<install_folder>/URLB.ini file. The path for the URLB.ini file is set using the “normalLists” parameter under the [URL-blocking] section in the intscan.ini file.

You can also block URLs based on pattern matching with the PhishTrap pattern file, a database of patterns of Web sites associated with phishing or related schemes.

In addition to adding the URLs through the Web console, URL block lists can be imported from a text file.
Using a Local List

You can configure IWSA to block access to URLs based on a list of blocked sites and exceptions that you maintain for your environment.

When adding URLs to the Block List and Exceptions to the Block List, it is best that you first make all additions to one list and then save this configuration before you make additions to the other list. This method will help ensure that the same URL exists in both lists. If you attempt to add a URL to the Block List or Exceptions to the Block List and it already exists in the other list, IWSA will prevent the addition and display a warning message stating that the entry already exists in the other list.
Configuring URLs to block:

1. Click **HTTP > URL Access Control > URL Blocking**.

2. Select **Enable URL blocking**.

3. On the **Via Local List** tab, type the full Web address or URL keyword, or exact-match string in the **Match** field.

 To identify a folder or directory in a given Web site, use a forward slash (/) after the last character. For example, if you want to block `www.blockedsite.com` but allow access to its charity directory:

 a. Type `www.blockedsite.com` in the **Match** field, then click **Block**.

 b. Type `www.blockedsite.com/charity/` in the **Match** field, and click **Do Not Block**. (If you write `charity` without the forward slash, IWSA will consider `www.blockedsite.com/charity` as a file.)

4. Click **Remove** to remove the highlighted entries from the list (or **Remove All** to remove all entries).

5. Click **Save**.

Importing a List of Blocked URLs from a File

IWSA can import a list of URLs to block from a file. Write a title or comments on the first line of a file that contains a list of Web sites, URL keywords, or strings, and then write one rule per line. Group sites to be blocked under `[block]` as shown in the example, and group exceptions under `[allow]`. For example:

```
URL Blocking Import File {this title will be ignored}
[block]
www.blockedsite.com*
unwanted.com*
urlkeyword
banned.com/file
banned.com/downloads/

[allow]
www.blockedsite.com/file
www.unwanted.com/subsite/
www.trendmicro.com*
```

To include the “*” and “?” characters in a URL blocking string rather than having IWSA consider them as wildcards, use variable `%2a` or `%2A` to represent * and
variable %3f or %3F to represent ?. For example, to block
www.example.com/*wildcard literally, specify the blocking rule as
www.example.com/%2awildcard instead of
www.example.com/*wildcard.

If importing the list is not successful, verify that you have followed the specified format for the URL Blocking import file before contacting customer support. Be sure you have:

• Listed blocked entries under [block] and exceptions under [allow]
• Formatted entries containing wildcards as described in this document or the online help

To import a list of URLs to block:

1. Format a text file as described above with the URLs to block, along with any exceptions.

2. Click HTTP > URL Access Control > URL Blocking from the main menu.

3. Specify the location of the file to import in the Import block list and exceptions field by clicking Browse, and click Import.

4. Click Save.

Using a Pattern File (PhishTrap)

Phishing is a malicious hacker term that means electronically hunting for a victim. “Phishers” imitate an email message from a company with whom the user has an account. These fraudulent email messages seem authentic, and many recipients are deceived into supplying their personal information, such as a credit card account number, eventually resulting in the user becoming a victim of computer crime.

PhishTrap is a Trend Micro service that leverages the following:

• Ability of IWSA to block outbound access to a specific URL
• Capability of the Trend Micro antivirus team to collect and analyze customer submissions and distribute a database of known harmful URLs.

PhishTrap can minimize harm from private and confidential information from being sent out from the client. PhishTrap also prevents access to known phishing URLs.

The URL that is determined to maliciously collect user information will be added to the PhishTrap pattern file. The PhishTrap pattern file is a list of URLs that IWSA will
block. IWSA periodically retrieves the updated PhishTrap pattern file via ActiveUpdate.

IWSA allows users to submit suspected phishing URLs to TrendLabs for evaluation. TrendLabs evaluates the Web site and determines whether the submitted URL is malicious. The URL is considered malicious if it meets the criteria for one of the categories listed below.

- **Phishing**: A fraudulent collection of confidential information. This can be done by offering an email message or Web site that poses as a communication from a legitimate business, which requests information for the purpose of identity theft.

- **Spyware**: A hidden but legal program that secretly collects confidential information. Spyware monitors a user’s computing habits and personal information, and then sends this information to third parties without the user’s approval.

- **Virus accomplice**: An outbound HTTP request due to known behavior of malicious code—the malicious code could either send the information out or download further components from a certain URL. These are the symptoms of a spyware or trojan infection.

- **Disease vector**: A Web site that exists only for a malicious purpose.

Blocking URLs using PhishTrap

To block PhishTrap categories:

1. Open the IWSA Web console and click **HTTP > URL Access Control > URL Blocking > Via Pattern File (PhishTrap)**.
2. Make sure that **Enable URL blocking** is enabled.
3. Enable the PhishTrap categories to block.
FIGURE 47. Block access to URLs in the PhishTrap pattern file

4. Click Save.

Submitting a Suspected Phishing URL to TrendLabs

To report a suspected phishing URL to Trend Micro, use the submission form on the URL Blocking configuration screen. Submissions are investigated; and if associated with malicious behavior, the URL is added to future releases of the PhishTrap pattern file.

1. Open the IWSA Web console and click HTTP > URL Access Control > URL Blocking > Via Pattern File (PhishTrap).
2. Type the URL that you want Trend Micro to investigate in the PhishTrap URL field.
3. Select the **PhishTrap categories** (either phishing, spyware, virus accomplice, disease vector, or others) that you think the URL is associated with from the menu under **PhishTrap categories**.

4. Type an email address where you can be contacted, if necessary.

5. Add any observations about the URL that you would like to tell our TrendLabs engineers.

6. Click **Submit**.
URL Filtering

This chapter presents an overview and workflow of the IWSA URL filtering module with procedures for creating and configuring URL filtering policies.

URL filtering, along with Web Reputation, is part of the multi-layered, multi-threat protection solution provided by IWSA (see Overview of URL Access Control on page 139).

Topics in this chapter include the following:

• Introducing URL filtering and how URL filtering policies work
• Understanding the URL filtering workflow
• Creating, modifying and deleting URL filtering policies
• Configuring URL filtering settings, including managing URL categories, setting URL filtering exceptions to retain access to blocked sites and setting the work and leisure time schedules
• Requesting reviews of URLs misclassified into the wrong category
Introducing URL Filtering

The default settings for the IWSA URL filtering module assume that your organization’s primary interest is to avoid legal liabilities associated with viewing of offensive material. However, because there are instances that require exceptions, additional policies can be created to allow access to restricted category groups for employees whose job functions require broader access. For example, members of the Human Resources or IT departments may need unrestricted Internet access to conduct investigations into violations of your organization’s acceptable Internet use policies.

In addition, IWSA also provides enhanced filtering by combining dynamic filtering with the advanced Web Reputation databases. Browsing Web sites related to online trading, shopping, auction bidding, dating, gambling, and other non-work related activities during work time reduces employee productivity and decreases bandwidth available for legitimate browsing. IWSA allows Internet access to be customized according to user and workgroup-specific needs, thus optimizing the use of the Internet.

IWSA allows for very flexible application of the URL filtering policy. There are three basic mechanisms for customization:

- IWSA access to the Web Reputation database that contains URLs in over 60 categories, such as “gambling,” “games,” and “personals/dating.”
- Each category can be blocked or not blocked during time periods designated as work or leisure time.
- Different policies can be configured for different users in your environment.
Access to all identified URLs within a targeted category may be managed according to policy. The database associates each URL with one or more categories. In the event a URL that your organization needs to access is associated with a prohibited category, exceptions to URL filtering can be used to override the database’s classification. The patterns specified in the Approved URL List are matched against the URL, not to the content of the document to which the URL refers. IWSA gives you the option of configuring a URL filtering approved-list by matching Web site, URL keyword, and exact-string categories.

The following are two rules that you can apply for a given policy in a given time period:

- Block access to configured site categories during work time
- Block access to configured site categories during leisure time

URL Filtering Workflow

The input for URL filtering consists of the URL and the user’s ID (IP address, IP address range, user name, group name, or host name). A user is identified according to the user identification method that IWSA is configured to use (see [Configuring the User Identification Method](#) starting on page 66).

A URL requested by a user can be classified into one or more of 60-plus categories, which are organized into 7 groups. With the requested URL as input, the query is made to the Web Reputation database. The result of the query either allows or denies access to the requested URL.

Note: Manual updates to the URL filtering engine can be done from the Summary (Scanning tab) screen.
Managing URL Filtering Policies

IWSA is pre-configured with two default URL filtering policies—the Global Policy that applies to all clients on the network, and the Guest Policy that applies to clients that access IWSA through the guest port.

Note: The Guest Policy is not supported if you have installed IWSA in ICAP mode.

Enabling URL Filtering

Make sure that the URL filtering module is enabled before you start.

To enable URL filtering:
1. Click **HTTP > URL Filtering > Policies** from the main menu.
2. Select **Enable URL filtering**.
3. Click **Save**.

Creating a New Policy

Creating a new URL filtering policy is a two-step process:
- Select the accounts to which the policy will apply
- Specify the Web site categories to be blocked during work and leisure time.

To create a new policy:
1. Open the IWSA Web console and click **HTTP > URL Filtering > Policies** from the main menu.

3. Type a descriptive **Policy name**.
 Policy names that include references to the users or groups to which they apply, for example, “URL Filtering Policy for Researchers,” are easy to remember.

4. Select the users to which the policy applies.
 The options on this page depend upon the user identification method that you are using—either IP address, Host name (modified HTTP headers), or User/group name via proxy authorization (LDAP). For more information about configuring the user identification method and defining the scope of a policy, see *Configuring the User Identification Method* starting on page 66.

![FIGURE 48. Specifying the user or group IP address]
5. Click Next.
6. On the Specify Rules screen, ensure that Enable policy is selected.
7. Select the URL categories to which you want to restrict access.
 • Select the check box of the category that you want to blocked during work time. To select all the categories of a group, click Select All for the group. The group does not need to be expanded for you to select all categories in a group. Restricted days and hours are defined on the URL Filtering Settings (Schedule tab) page.
 • Select the check box of the category that you want to block during leisure time. To select all the categories of a group, click Select All for the group. The group does not need to be expanded for you to select all categories in a group. Unspecified times are considered “leisure” times.

 The list of groups is not configurable.
8. Type an optional Note to include useful information about this policy for future reference.
9. Click Save.
10. In the URL Filtering Policies screen, set the priority of the new policy (under the Priority column) by clicking on the up or down arrows.

 The Priority setting determines which policy is applied if there are accounts belonging to two or more policies.
11. Click **Save**.

12. To immediately apply the policy, click **Deploy Policies Now**; otherwise, the policy will be applied after the database cache expires.

Modifying and Deleting Policies

IWSA gives you the option of editing any existing policy to better suit your current environment. You can also delete unnecessary account(s) from a policy.

To modify an existing policy:

1. Click **HTTP > URL Filtering > Policies** from the main menu.
2. Click the **Account Name** or **Policy Name** links of the policy to be modified.
 - Change the scope of your policy by adding or deleting clients on the Account tab.
 - From the Rule tab, modify the URL categories that clients are allowed to access.

4. Click Save.

5. Go to HTTP > URL Filtering > Policies and set the priority of your policies using the arrows. The Priority setting determines which policy is applied if there are accounts belonging to two or more policies.

6. Click Save.
7. Click **Deploy Policies** to immediately apply the policy; otherwise, the policy will be applied after the database cache expires.

URL Filtering Settings

There are several settings related to URL filtering that you can modify to reflect the realities of your work environment:

- Over 60 Web site categories, which are contained in 7 logical groups
- Configuring exceptions to allow access to specific Web sites that would otherwise be blocked by a URL filtering rule
- Setting “work time” and “leisure time” schedules

Additionally, if you believe a URL is classified in the wrong category, you can send a request to Trend Micro to consider re-classifying the URL. You can also look up the category of a URL that you are not sure of.

Note: The Hacking/Proxy Avoidance category in InterScan Web Security Appliance 2.5 release has been split into two separate categories in release 3.1. If you specified this category for an IWSA 2.5 policy, the migration process will automatically substitute the Proxy Avoidance category in its place. To retain all of the Hacking/Proxy Avoidance category, you must manually select the Hacking category in IWSA 3.1 migrated policies.

Requesting URL Re-classification and URL Lookup

Organized in seven logical groups, IWSA includes default categories that provide a baseline level of URL filtering. For example, Web sites related to humor and jokes would be found in the “Joke Programs” category, which is located in the Computers/Bandwidth group.

If you do not agree with the default classification of a URL, Trend Micro enables you to suggest a re-classification.

Before rolling out URL filtering policies, Trend Micro recommends verifying that the default categorizations are appropriate for your organization. For example, a clothing retailer might need to remove a swimsuit Web site from the “Intimate
Apparel/Swimsuit” category located in the Adult group in order to allow legitimate market and competitor research.

If you want to know a category of a URL, you can look it up when specifying URL filtering settings in the URL Filtering Settings screen (URL Lookup and Re-classification tab).

Unrated and Unknown URLs
An unrated URL is a Web site that Trend Micro knows about but has not yet put into a filtering category.

An unknown URL is a Web site that is one of the following:
- Unknown to Trend Micro
- A Web site that is not in the Web Reputation database
- The daemon may be down or the remote rating server is inaccessible to give the URL a rating

An unknown URL has a rating of zero (0) and cannot be blocked.

Requesting a re-classification
To request a URL re-classification:

1. Click HTTP > URL Filtering > Settings from the main menu.
2. Click the URL Re-classification & Lookup tab.
3. Click on the URL.

The Trend Micro Online URL Query - Feedback System screen opens.
4. Complete all the necessary information and click Submit.

URL Filtering Exceptions

IWSA provides the option to configure exceptions to URL filtering policies and exceptions to URL filtering by the Web Reputation database (see Specifying Web Reputation Exceptions on page 92). URL exceptions allow access to Web sites that would otherwise be blocked. If your clients have a legitimate need to view Web sites that are being blocked by URL filtering, enter the site as a URL filtering exception. In addition to entering a URL, you can also enter one of the following:

- Specific string to match within a URL
- Exact-match string to allow access to a specific file from an otherwise blocked site

The URL Filtering Exception list for URL filtering policies is maintained in the /etc/iscan/ URLFilteringExceptions.ini file. The path for the URLFilteringExceptions.ini file is set using the filtering_exception_list parameter under the [url-filtering] section of the /etc/iscan/ IWSSPIUrlFilter.dsc file.
To configure the URL filtering approved list:

1. Open the IWSA Web console and click **HTTP > URL Filtering > Settings**.
2. In the **Approved URL List** tab, type the Web address, URL keyword, or exact-match string in the **Match** field. Identify this entry by selecting one of the three options:
 - Web site
 - URL keyword
 - String

![Figure 53. URL Filtering Exceptions exempt-specific URLs and files from filtering](image)
3. Click **Add** to include this entry in **Do not filter the following sites**.
 Click **Remove** to remove highlighted entries from the list (or **Remove All** to remove all entries).
 To import a list of URL filtering exceptions from a file, type or click **Browse** to navigate to the location of the file in the **Import approved list** field, and then click **Import**.

Note: Format the URL filtering exceptions text file as follows:
- line 1 = URL Filtering Import File
- line 2 = [approved]
- line 3 and so on:
 - Web sites, URL keywords, and strings, in the format *information*
For example:

```
URL Filtering Import File
[approved]
*www.trendmicro.com*
*www.antivirus.com*
```

To include the “*” and “?” wildcards literally, use variable %2a or %2A to represent * and variable %3f or %3F to represent ?. For example, to filter the site www.example.com/*wildcard literally, specify the filtering rule as www.example.com/%2awildcard instead of www.example.com/*wildcard.

4. Click **Save**.

Work and Leisure Schedule Settings

InterScan Web Security Appliance enables you to specify two sets of work times: Work Time 1 and Work Time 2. Both of these work times include 24-hour selections.

When creating URL filtering policies, you can set the policy to be in effect for both Work Time 1 and Work Time 2 and/or during “leisure” time. When you set a policy for Work Time 1, it is also in effect for Work Time 2.
InterScan Web Security Appliance policies permit or block access to URL categories during work and leisure time. By default, InterScan Web Security Appliance uses the following default work time settings:

- Work days: Monday to Friday
- Work hours: 8:00 to 11:59 (Work Time 1) and 13:00 to 17:00 (Work Time 2).

Time not defined as work hours is considered “leisure.”

Note: It is assumed that all InterScan Web Security Appliance devices in a cluster are within the same time zone.

Before implementing URL filtering policies in your organization, Trend Micro recommends verifying that the work and leisure time settings are appropriate for your environment.

To configure the URL filtering policy schedule:

1. Open the InterScan Web Security Appliance Web console and click **HTTP > URL Filtering > Settings > Schedule**.

2. Under **Work Time Settings**, select the work days and work hours in the fields provided.

 In the Work Time 1 and/or Work Time 2 areas, specify the hours during which you want to restrict access to selected URL categories.
FIGURE 54. Define work and leisure time settings for your organization

3. Click **Save**.

To specify no work time or all work time:

- If you do not want to use work times, uncheck all of the work days. All time will then be leisure time.
- If you want all time to be work time, select all days and specify the following:
 - For Work time 1, choose “0:00” in the **From** drop-down list and “11:59” in the **To** drop-down list.
 - For Work time 2, choose “12:00” in the **From** drop-down list and “23:59” in the **To** drop-down list.
FTP Scanning

This chapter describes FTP virus scanning and the different ways FTP scanning can be deployed and configured for your environment.

Topics in this chapter include:

• Understanding similarities and differences between FTP and HTTP virus scanning
• Configuring FTP scanning proxy options (stand-alone vs. FTP proxy)
• Understanding data connection options (passive FTP vs. active FTP)
• Configuring FTP scanning options
• Setting FTP access control settings
Introduction

InterScan Web Security Appliance can scan FTP uploads and downloads for viruses and other malicious code in a manner similar to how it processes HTTP traffic. Unlike HTTP scanning, however, a single configuration is applied to all clients on your network—user or group-based policies are not supported for FTP scanning.

InterScan Web Security Appliance FTP scanning uses either a stand-alone proxy or works in conjunction with another FTP proxy on the network. To deploy FTP scanning into your environment, first configure the FTP settings that control the type of proxy and the type of data connection (either passive or active FTP; see Passive and Active FTP starting on page 169). The next step is to configure the scanning rules that control the traffic direction that is scanned, the type of files to block or scan, how compressed and large files are handled, and the actions taken when malicious code is detected.

After setting the FTP scanning settings, there are optional security and performance settings to consider modifying. Access control lists can be configured to selectively allow client FTP access based on the client’s IP address. To improve performance when frequently accessing FTP sites over which you have direct control of the content, specific FTP servers can be added to an approved list so that downloads from them will not be scanned. Moreover, to further lock down the InterScan Web Security Appliance device, FTP access to specific ports can either be allowed or denied.

FTP Settings

InterScan Web Security Appliance FTP scanning settings include options for using either the IWSA native (stand-alone) proxy or a separate FTP proxy, two options for how data connections are made (active FTP vs. passive FTP).

Proxy Settings

InterScan Web Security Appliance FTP scanning provides two proxy options—a “stand-alone” mode whereby clients connect to the native IWSA proxy that later connects with the FTP server, and an “FTP proxy” mode whereby IWSA passes requests through a separate FTP proxy that in turn connects to the FTP server.
• In stand-alone mode, the client needs to use `<username>@<FTP server name>` as the FTP username to indicate which FTP server IWSA should connect to.

• In FTP proxy mode, no username is required because InterScan Web Security Appliance always connects to the FTP proxy and server designated in the configuration settings.

FTP proxy mode can also be used to protect a single FTP server by specifying the FTP server’s hostname/IP address and port number in the FTP proxy configuration. In this case, the InterScan Web Security Appliance FTP scanning module is dedicated to the specified FTP server, in a manner similar to a reverse proxy for HTTP scanning.

Passive and Active FTP

InterScan Web Security Appliance uses either active or passive FTP for data connections, depending on your firewall setting. FTP uses two ports, a data port and a command port. In active FTP, the server connects to the client to establish the data connection. In passive FTP, the client connects to the server.

When passive FTP is selected in the InterScan Web Security Appliance configuration, InterScan Web Security Appliance converts “active” mode on the client side into passive mode on the server side. Mode conversion is performed only when the IWSA configuration is passive and the client uses active mode. If the IWSA configuration is active, no conversion is performed, so passive requests from the client are still passive requests on the server side.

Client Requests

To configure FTP settings, you need to specify the proxy settings and the data connection.

To configure FTP settings:

1. Click **FTP > Configuration > General** from the main menu.
2. Under the **Proxy Settings** section, select the appropriate FTP setting based on your topology—either **Use stand-alone mode** if you want the native IWSA proxy to connect to FTP sites, or **Use FTP proxy** for the FTP service to work
with an existing FTP proxy (specify the host name of the **Proxy server** and the **Port**).

![FTP Configuration](image)

FIGURE 55. Configuring your FTP connection

3. Choose the type of data connection to use—either **Passive FTP** or **Active FTP**.
4. Click **Save**.

FTP Scanning Options

The FTP virus scanning settings are similar to the HTTP scanning settings, with two differences:
- FTP scanning does not support user or group-based policies; thus one configuration is applied to all clients that access FTP sites through IWSA
- The traffic direction to scan can be configured—either uploads, downloads, or both

Enabling FTP Traffic and FTP Scanning

Before your clients can access FTP sites through IWSA, FTP traffic must be enabled.

To **turn on FTP traffic**:

1. Click **Summary** in the main menu.
2. Click **Turn On** or **Turn Off** (at the top of the screen) to start or stop the FTP traffic flow.

 Turn Off means the FTP service on the IWSA device is shut down; thus clients cannot connect to any FTP servers through the IWSA FTP proxy. The default setting is **On**.

 Once the FTP traffic is enabled, FTP scanning must be turned on.

To enable or disable FTP scanning:

1. Open the IWSA Web console and click **FTP > Scan Rules**.
2. Select **Enable FTP scanning**.
3. Click **Save**.

Scan Direction

Depending on how you want to use IWSA FTP scanning, you can selectively configure the FTP scanning module to scan uploads, downloads or both. For example, if you have deployed antivirus software to all of the workstations in your organization, disabling uploads may be justified to achieve a performance benefit, since the files should already be scanned on the client.

File Blocking

You can identify the types of files to block for security, monitoring or performance purposes. You can block file types such as Java applets, Microsoft Office documents, audio/video files, executables, images, or other types that you manually configure. If your organization has policies that prohibit certain types of files in your network, IWSA FTP file blocking can stop them at the FTP gateway.

File Scanning

When configuring the types of files to be scanned, there are three options:

- **All scannable files**: All files are scanned (the safest option).
- **IntelliScan**: Only file types known to harbor viruses are scanned (file type is determined by checking the file header). See *About IntelliScan* starting on page 95 for more information.
• **Specified file extensions:** Only files with specified file extensions are scanned. Trend Micro recommends scanning all files, unless performance considerations require choosing one of the other options.

Priority for FTP Scan Configuration

If the configurations on the **FTP Virus Scan** screen conflict with each other, the program will scan according to the following priority:

1. Block these file types
2. Scan these file types (if not blocked)

Compressed File Handling

Compressed files can pose special challenges to antivirus software performance, because they must be decompressed before the individual files within the archive can be scanned. IWSA provides the option to block all compressed files at the gateway. Alternatively, compressed files can be accepted at the gateway but blocked when you specify one of the following:

- Decompressed file count exceeds a given threshold
- Cumulative decompressed file size exceeds a configured maximum
- Recursively compressed file exceeds a certain number of compressed layers
- Uncompressed file size exceeds a configured maximum percentage
- Certain file type within the compressed file is not permitted; therefore, the whole compressed file is blocked

Note: IWSA can also block specified file types within a compressed file during HTTP scanning as well.

Large File Handling

If the delay when downloading large files is unacceptable, IWSA can be configured to skip scanning of files larger than a configured threshold. Additionally, the FTP scanning module can use the “deferred scanning” method for large files to prevent
the client connection from timing out. For more information, see Deferred Scanning starting on page 101.

Note: The FTP scanning module does not support the “scan before delivering” large file handling methods used by the HTTP scanning module.

Encrypting Quarantined Files

If IWSA is configured to quarantine files as a scan action, it can optionally encrypt the files to prevent them from being accidentally executed by someone browsing the quarantine folder. Note that once encrypted, the files can only be decrypted by a representative from Trend Micro’s Support department.

Scanning for Spyware/Grayware

IWSA can scan for many additional non-virus risks for which patterns are contained in the spyware/grayware pattern file. For a summary of these risks, see Spyware and Grayware Scanning Rules starting on page 104.

Configuring FTP Scanning Settings

To configure FTP scanning:

1. Click FTP > Scan Rules from the main menu.
2. Select Enable FTP scanning.
3. Select the types of FTP transfers to scan—either Upload, Download, or both.
4. Under the **Block these file types** section, select the file types to be blocked. In the **Other file types** field, type other file types to block (use a space to delimit multiple entries). See Appendix B, *Mapping File Types to MIME Content-types* for a list of other file types that can be blocked.

5. Select the files to scan:
• To scan all file types regardless of extension, select **All scannable files**. IWSA opens compressed files and scans all files within. Scanning all files is the most secure configuration.

• To use true-file type identification, select **IntelliScan**. IntelliScan uses a combination of true attachment type scanning and exact extension name scanning. True attachment type scanning recognizes the file type even if the file extension has been changed. IntelliScan automatically determines which scanning method to use.

• To scan file types based on their extensions, select **Specified file extensions**. This contains the list of file types known to harbor viruses. IWSA scans only those file types that are explicitly specified in the **Default Extensions** list and in the **Additional Extensions** text box. The default list of extensions is periodically updated from the virus pattern file.

 Use this option, for example, to decrease the aggregate number of files IWSA checks, thus decreasing overall scan times.

 Note: There is no limit to the number or types of files you can specify. Do not precede an extension with the (*) character. Delimit multiple entries with a semicolon.

6. Under **Compressed file handling**, select from the following two options:
 • **Block all compressed files**
 • **Block compressed files if**

 If you enable the second option, type a value for the following parameters:
 • Decompressed file count exceeds (default is 50000)
 • Size of a decompressed file exceeds (default is 200MB)
 • Number of layers of compression exceeds (0-20, default is 10)
 • Compression ratio of any file in the archive exceeds (1-100%, default is 100)

7. Under **Large File Handling**, select **Do not scan files larger than** and enter the file size.

8. To avoid browser time-out issues when downloading large files, select **Enable Deferred Scan** and type the file size above which deferred scanning will occur. Also, select from the drop-down list the percentage of data to be sent to the client unscanned.
WARNING! The partial delivery of a file may result in a virus leak; thus, this would be a performance versus absolute security choice for you. Use this option only if you are currently experiencing an issue with timeouts.

9. To encrypt files sent to the quarantine directory to prevent them from being inadvertently opened or executed, select Encrypt quarantined files.

10. Click Save and switch to the Spyware/Grayware Scan Rule tab.

11. Select the types of additional risks to scan for, and click Save.

12. Switch to the Action tab, and select the actions for IWSA to take in response to scanning.

13. Click Save.

Setting Scan Actions on Viruses

You can specify the action for FTP scanning to take upon finding an infected file (the recommended action setting is Clean):

- Choose Quarantine to move an infected file to the quarantine directory without cleaning. The requesting client will not receive the file.
- Choose Delete to delete an infected file at the server. The requesting client will not receive the file.
- Choose Clean to automatically clean and process an infected file. The requesting client will receive the cleaned file if it is cleanable.

You can specify the action for FTP scanning to take upon finding an uncleanable file, which includes worms and Trojans (the recommended action setting is Delete):

- Choose Pass to send an uncleanable file to the client without cleaning (Trend Micro does not recommend this choice, because it may allow infected files into your network).
- Choose Quarantine to move, without cleaning, an uncleanable file to the quarantine directory. The requesting client will not receive the file.
- Choose Delete to delete an uncleanable file at the server. The requesting client will not receive the file.
You can specify the action for FTP scanning to take in handling a password-protected compressed file (the recommended action setting is Pass):

- Choose **Pass** to send a password-protected file to the client without cleaning.
- Choose **Quarantine** to move, without cleaning, a password-protected file to the quarantine directory. The requesting client will not receive the file.
- Choose **Delete** to delete a password-protected file at the server. The requesting client will not receive the file.

In the event a file containing macros (not necessarily macro viruses) is detected during FTP transfers, the following actions are available (the recommended action setting is Pass).

- Choose **Quarantine** to move the files containing macro(s) to the quarantine directory.
- Choose **Clean** to remove macros before delivering the file.
- Choose **Pass** to disable special handling of files containing macro(s).

FTP Access Control Settings

IWSA includes several access control settings for additional security and performance tuning:

- FTP access can be enabled based on the client’s IP address.
- Trusted servers over which you have close control of their content and are frequently accessed can be added to an approved list and transfers will not be scanned for a performance benefit.
- The IWSA FTP server can be locked down by denying access to ports that you configure.

By Client IP

By default, all clients on the network are allowed to access FTP sites through the IWSA device (provided FTP traffic is enabled, see *Enabling FTP Traffic and FTP Scanning* starting on page 170).

To limit FTP access based on client IP address:

1. Click **FTP > Configuration > Access Control Settings** from the main menu.
2. Switch to the Client IP tab.

![Access Control Settings](image)

FIGURE 57. Access control settings restrict traffic through the InterScan Web Security Appliance device

3. Select **Enable FTP Access Based on Client IP**.

4. Enter the IP addresses of clients allowed FTP access through InterScan Web Security Appliance. The following are acceptable entries:
 - **IP address**: a single IP address, for example, 123.123.123.12.
 - **IP range**: clients that fall within a contiguous range of IP addresses, for example, from 123.123.123.12 to 123.123.123.15.
 - **IP mask**: a single client within a specified subnet, for example, entering IP = 192.168.0.1 and Mask = 255.255.255.0 will identify all machines in the 192.168.1.x subnet. Alternatively, the Mask can be specified as a number of bits (0 to 32).

5. Click **Add** and continue entering other clients that are allowed access FTP sites.

6. Click **Save**.
Via Server IP Approved List

To reduce possible performance issues when accessing trusted FTP sites over which you directly control the content, you can exempt some FTP sites from scanning by adding their IP addresses to an approved list.

Note: Skipping scanning via the IP approved list only applies to file downloads. Uploaded files will still be scanned.

To add trusted servers to the approved list:
1. Click FTP > Configuration > Access Control Settings from the main menu.
2. Switch to the Approved Server IP List tab.
3. Enter the IP addresses of FTP sites to exempt from InterScan Web Security Appliance FTP virus scanning. See *Identifying Clients and Servers* starting on page 44 for information and examples about how to identify the servers.
4. Click Add and continue entering other FTP sites to exempt.
5. Click Save.
Via Destination Ports

By default, clients can access any port on the InterScan Web Security Appliance FTP server. To increase security, you can selectively allow or deny access to the ports.

To configure IWSA FTP ports to which clients can connect:

1. Click FTP > Configuration > Access Control Settings from the main menu.
2. Switch to the Destination Ports tab.

3. Choose the action to apply to a port, either Deny or Allow.
4. Enter the Port or Port Range to which the action will apply and click Add.
5. Continue to add other ports to allow or deny.
6. Click Save.

Note: The destination port list at the bottom of the Destination Port tab reflects the processing order (or reverse priority order). Destination port access control is only applied during an FTP command connection, and FTP data connections are not
affected. A typical configuration is 1. “Deny ALL” and 2. “Allow 21” which results in only allowing access to port 21.
Chapter 9

Reports, Logs, and Notifications

This chapter describes how administrators can get timely information about their gateway security via InterScan Web Security Appliance reports, logs and notifications.

Topics in this chapter include the following:

- Understanding the Summary screen with system dashboard and reports
- Introducing blocking event, traffic, spyware/grayware and cleanup reports
- Configuring report settings and setting the report's scope
- Generating real-time and scheduled reports
- Customizing reports, and several examples of sample InterScan Web Security Appliance report content
- Configuring the various InterScan Web Security Appliance logs
- Querying and viewing logs
- Configuring log settings
- Exporting log data to CSV files and querying logs using Microsoft Excel
- Introducing notifications, including configuring email notification settings
- Using tokens in notifications to dynamically provide event information
- Using SNMP notifications
Summary Reports

The IWSA console opens to the Summary screen, which displays the System Dashboard with real-time, dynamic system information. Other available reports display static information. Tabs on the Summary screen access the following information:

- Real-time Statistics on page 184
- Scanning Activity Tab on page 187
- URL Activity Tab on page 188
- Spyware Activity Tab on page 189
- Security Risk Reporting Tab on page 189

Real-time Statistics

IWSA provides dynamic statistics where the administrator can view the “real-time” information about the IWSA system. Real-time statistics are displayed as graphs in the System Dashboard tab of the Summary page. These statistics include the following:

- Virus and Spyware Trend Display on page 184
- Hard Drive Display on page 185
- Bandwidth Usage Display on page 185
- Concurrent Connections Usage Display on page 186
- CPU Usage Display on page 186
- Physical Memory Usage Display on page 187

“Virus and Spyware Trend” is a static statistic that is generated when you open the Summary (System Dashboard tab) page. “Virus and Spyware Trend” is not updated over time like the other real-time statistics.

Virus and Spyware Trend Display

This is a static display that shows the rate at which viruses and spyware are coming up against your system. (You can specify threshold alerts so that you are notified of a critical level of virus and/or spyware “hits.”) The rate is based on a seven-day period and “hits” are recorded daily. Therefore, a new display is started every seven days. The display does not include the names of users involved.
Note: Since each day’s virus and spyware data is represented by a single point on the display, IWSA cannot start graphing data until there are two points, or two days worth of data available.

The information in the Virus and Spyware display is for the entire IWSA installation (single server and up to a server farm).

Hard Drive Display

This is a static display that shows the status of the disk(s) used by IWSA for its system files, quarantine space, temporary space, and logs. The Hard Drive display can monitor up to 12 disks.

If the database resides on the same drive as any of these directories, then the database disk usage is also included in the display. The scale along the Y-axis ranges from 10 to 100 percent.

You can specify threshold alert values and the frequency of alerts so that you are notified when any of the hard disk statuses reach a critical level. IWSA can send these alerts either through email, SNMP trap/notification (if enabled), or both. See *Email Notification Settings* on page 219 and *Enabling SNMP Trap Notifications* on page 233.

Bandwidth Usage Display

This is a dynamic display that shows the bandwidth usage of both inbound and outbound traffic for HTTP and FTP. IWSA sees traffic in terms of requests and responses. Therefore, the display interprets all requests as outbound traffic and all responses as inbound traffic. From this display, you can view any potential bandwidth problems.

The display shows ten data points, which gives the graph a history of five to ten minutes of activity. This activity is only monitored for the local IWSA device. With the ideal refresh rate being between 30 and 60 seconds, the display has a default refresh rate of 30 seconds.

Clicking the 1-day or 30-day button opens a window that shows a static chart with one or 30 days of usage, respectively. IWSA retrieves this information from the
database. If the database does not contain enough data, the display shows the data that is available.

Note: Since each day’s bandwidth usage data is represented by a single point on the display, IWSA cannot start graphing data until there are two points, or two days worth of data available.

You can specify threshold alert values and the frequency of alerts so that you are notified when a bandwidth usage reaches a critical level. IWSA can send alerts either through email, SNMP trap/notification (if enabled), or both. See *Email Notification Settings* on page 219 and *Enabling SNMP Trap Notifications* on page 233.

Note: The bandwidth setting should be very high—above “out of normal range” values to avoid frequent alerts.

Concurrent Connections Usage Display

This dynamic display shows concurrent connections usage for HTTP in purple and FTP in orange. It shows the number of connections and connection time (in seconds.)

CPU Usage Display

This is a dynamic display that shows CPU utilization on the local system. In the case of multiple CPUs, the display shows the average IWSA usage across all CPUs. It does this by displaying a single line for all CPU utilization. IWSA determines the CPU utilization based on CPU cycles used, CPU cycles used by IWSA, and total CPU cycles used by the backend, CPU-monitoring API.

By default, IWSA samples the CPU usage each second for two minutes, giving you 120 data points. In the init file, you can change the default refresh rate.

Clicking the 1-day or 30-day button opens a window that shows a static chart with one or 30 days of CPU usage, respectively. IWSA retrieves this information from the database. If the database does not contain enough data, then the display shows the data that is available.
Note: Since each day’s CPU usage data is represented by a single point on the display, IWSA cannot start graphing data until there are two points, or two days worth of data available.

You can specify the threshold alert value and the frequency of the alert so that you are notified when a CPU usage reaches a critical level. IWSA can send alerts either through email, SNMP trap/notification (if enabled), or both. See Email Notification Settings on page 219 and Enabling SNMP Trap Notifications on page 233.

Physical Memory Usage Display

This is a dynamic display that shows the amount of physical memory used by the local IWSA computer.

By default, IWSA samples the physical memory usage each second for two minutes, giving you 120 data points. In the init file, you can change the default refresh rate.

Clicking the 1-day or 30-day button opens a window that shows a static chart with one or 30 days of physical memory usage, respectively. IWSA retrieves this information from the database. If the database does not contain all the data, the display shows the data that is available.

Note: Since each day’s physical memory data is represented by a single point on the display, IWSA cannot start graphing data until there are two points, or two days worth of data available.

You can specify the threshold alert value and the frequency of the alert so that you are notified when physical memory usage reaches a critical level. IWSA can send alerts either through email, SNMP trap/notification (if enabled), or both. See Email Notification Settings on page 219 and Enabling SNMP Trap Notifications on page 233.

Scanning Activity Tab

Activities pertaining to scanning are available from the Scanning tab. They include:

- Enabling and disabling HTTP and FTP traffic (available from all Summary tabs)
- Updating and rolling back of patterns, signatures, databases, and engines
- Displaying malware names and frequency of occurrence in scanning results by selected time period
- Refreshing scanning results
- Displaying current IWSA version

The **Scanning** screen displays the current versions, the last update date, and the update scheduled (if any) of the following components:

- Virus pattern
- PhishTrap signature database
- Spyware patterns
- IntelliTrap pattern
- IntelliTrap exception pattern
- IntelliTunnel signatures
- Virus scan engine
- URL filtering engine

URL Activity Tab

URL activity by selected time period displays the URL or category blocked and the frequency of occurrence of the following items:

- Most blocked URL
- Most blocked URL category
- Most blocked phishing site
Spyware Activity Tab

The Spyware tab displays scanning information about the following:

- **Top five detected spyware (for last seven days)** — This section gives the spyware name and the option to add it to the exceptions list.
- **Top five spyware risks (for last seven days)** — This section lists the User ID where the risk initiates.
- **Scanning results (for today, last week, or last month)** — This section lists the spyware name and frequency of occurrence.
- **Cleanup results (for today, last week, or last month)** — This section lists the malware type and the number of each type cleaned.

Security Risk Reporting Tab

Security Risk Reporting displays information for the past week or the past 28 days on different types of malicious activity. A comprehensive graph gives an “at-a-glance” view of multiple, color-coded threats.

Data from this report (listed by day or week) can be exported in CSV format or printed. The type of threats tabulated here include:

- **Malware** — such as viruses, macros, Trojans, IntelliTrap detections, and others
- **Spyware/grayware** — such as spyware, grayware, and ActiveX
- **Pharming and phishing** — such as those reported by Web Reputation, and the phishing pattern
- **Unauthorized Web access** — such as URL filtering and offending URLs detected by Web Reputation
- **Instant Messaging** — detected by IntelliTunnel
Introduction to Reports

IWSA can generate reports about virus and malicious code detections, files blocked, URLs accessed and DCS cleanups. You can use this information about InterScan Web Security Appliance program events to help optimize program settings and fine tune your organization’s security policies.

You can configure and customize reports. For example, InterScan Web Security Appliance allows you to generate reports for all or specific user(s), all or specific group(s), either on demand (in real time) or on a scheduled basis. To allow you to share the latest program information with those who need it, IWSA can send notifications via email when a scheduled report is ready for viewing.

Types of Reports

InterScan Web Security Appliance can generate the following categories of reports:

- **Blocking event reports:** Reports about virus detections, policy violations, and blocked URLs
- **Traffic reports:** Reports about Web browsing activity, the most popular Web sites and downloads, and other details about Web browsing activity
- **Spyware/Grayware reports:** Reports about spyware detections
- **Cleanup reports:** Reports about DCS cleanup attempts requested by InterScan Web Security Appliance
- **Individual user reports**

The following is a list of all available reports.

Blocking-event Reports

IntelliTrap is used in real-time reports to detect potentially malicious code in real-time, compressed executable files that arrive with HTTP data. When IntelliTrap detects a malicious executable file, the detection appears in Blocking-event reports.

- Riskiest URLs by viruses detected
- Users with most requests for malicious URLs
- Most violations by user

Trend Micro™ InterScan™ Web Security Appliance Administrator's Guide
Chapter 9: Reports, Logs, and Notifications

- Most violations by group
- Most blocked URL categories*
- Most blocked Applets and ActiveX objects*
- Most blocked URLs
- Most blocked URLs by day of the week
- Most blocked URLs by hour
- IntelliTunnel report
 * Requires a separate license

Individual User Reports
- Overview report
- Most popular sites visited by user
- Most blocked URLs by user
- Most blocked URL categories by user*
- URL activity by user
 * Requires a separate license

Traffic Reports
For traffic reports, you need to enable “Log HTTP/FTP access events” in Log > Settings.
Traffic reports may take a long time to generate; that is, up to a few hours for large sites with extensive access logs.
- Most active users
- Most popular URLs
- Most popular downloads
- Most popular search engines
- Daily traffic report
- Top categories (weighted)*
- Activity level by day of the week
- Activity level by hour
* To access the top categories report, you must have a URL Filtering activation code.

Spyware/Grayware Reports
- Spyware/grayware cleanup by category
- Top spyware/grayware detections
- Top user with Spyware/Grayware infection

Cleanup Reports
- Cleanup events by category*
- Top cleanup events by name*
- Most infected IP addresses*
* Requires a separate license

Report Settings
When generating a real-time report or setting up scheduled reports, you need to specify the information in this section.

Report Scope (Users and Groups)
Select the user(s) and or group(s) for which you want to generate a report. Options include:
- **All users**: All clients accessing the Internet through IWSA
- **Specific users**: Clients with specific IP addresses, host name, or LDAP directory entry
- **All groups**: All groups in the LDAP directory; if using the IP address or host name identification method, then “All groups” is equivalent to “All users”
- **Specific groups**: Either specified LDAP groups or a range of IP addresses

When generating reports for specific users or groups, the user selection method is determined by the method configured under **HTTP > Configuration > User Identification**. For more information about user identification, see *Configuring the User Identification Method* starting on page 66.
Report Type (Consolidated or Individual)

In Scheduled Reports, IWSA can generate consolidated reports, which contain all possible reports. In either Scheduled Reports or Real-time Reports, IWSA can generate individual reports that you specify. For a list of available reports, see Types of Reports starting on page 190.

Options

IWSA can present program information in either bar, stacked bar or line charts. Different chart shading for URLs or downloads blocked by IWSA versus successful requests can also be used.

Additional Report Settings

For real-time reports, specify the time period the report will cover.

When setting up a scheduled report, there are some additional settings:

- Send a notification email message when the report is generated
- Run the reports at a specific time and day
- “Enable” the report to run at the scheduled time

Generating Reports

Real-time Reports

IWSA enables you to generate reports in real time for either all or a subset of the clients accessing the Internet.

To configure real-time reports:

1. Click Reports > Real-Time Reports in the main menu.
2. Under Time period, select a time period for the report (either All Dates, Today, Last 7 days, Last 30 days).
3. Click Range to generate a report in a given time range, and then select the From and To dates.
4. Under **Report by**, select the users for which the report will be generated—either **All users**, **Specific user(s)**, **All groups**, or **Specific group(s)**. For more information about running reports for specific users or groups, see *To select specific group(s):* and *To select specific user(s):* starting on page 197.
FIGURE 60. Generating a real-time report
5. Under **Report Type**, select the desired report parameter(s).

Note: IWSA groups multiple report parameters into a single report, with each report parameter having its own section.

6. Under **Options**, select the chart type from the menu. To denote blocked traffic from unblocked traffic using different shading, select **Distinguish blocked from unblocked traffic**.

7. Click **Generate Report**.

 Click **Reset** to reset the form to the default values.

The following table provides information about the parameters that can comprise a report:

<table>
<thead>
<tr>
<th>Report by</th>
<th>Included Report Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>All users</td>
<td>Includes all listed report parameters except for “Individual user reports”</td>
</tr>
<tr>
<td>Specific users</td>
<td>Includes only the “Individual user reports” parameters</td>
</tr>
</tbody>
</table>
| All groups or Specific groups | The following reports are enabled:
 - Most violations by group*
 - Most blocked URL categories*
 - Most blocked Applets and ActiveX objects
 - Most blocked URLs*
 - Most blocked URLs by day of the week*
 - Most blocked URLs by hour* |

* For Web Reputation (including anti-pharming and anti-phishing), blocked sites appear in these reports. But to find a blocked site, the information will be only in “Most blocked URLs.”

TABLE 2. Report parameter availability depends on the report type

To select specific group(s):

1. Click **Reports > Real-time Reports** in the main menu.
2. Under **Report by**, select **Specific group(s)**, and then click **Select**.
When you click **Select on Specific group(s)** (Reports > Real-time Reports > Report by), the **Select Groups** pop-up screen opens according to the configured user identification method (HTTP > Configuration > User Identification).

![Select Groups](image)

FIGURE 61. Configuring a report's scope using the user/group (LDAP) or IP address range identification method

3. Type the IP address range (or search for a group name in your LDAP directory if using the “User/group name via proxy authorization” identification method).
4. Click **Add**.
5. After adding all the groups, click **Save**.

To select specific user(s):

1. Click **Reports > Real-time Reports** in the main menu.
2. Under **Report by**, select **Specific user(s)**, and then click **Select**.

When you click **Select on Specific user(s)** (Reports > Real-time Reports > Report by), the **Select Users** pop-up screen opens according to the setting made in the user identification method (HTTP > Configuration > User Identification).
FIGURE 62. Configuring a report’s scope using the user/group (LDAP) identification method or IP address range

3. Type the IP address, Host name or search for a user name in your LDAP directory if using the “User/group name via proxy authorization” identification method.

4. Click Add.

5. After adding the users to include in the report, click Save.

Scheduled Reports

You can configure InterScan Web Security Appliance to generate scheduled reports on a daily, weekly, or monthly basis. To manage the large volume of reports generated, IWSA allows you to generate only the reports that you specify and delete unnecessary scheduled reports from the archive directory.

To configure scheduled reports:

1. Click Reports > Scheduled Reports from the main menu.

2. Click the tab that corresponds to the frequency of scheduled report to run—either Daily, Weekly or Monthly.

4. Click the **Report Settings** link.
FIGURE 63. Scheduled Report Settings page (daily report shown)
5. Set the time and date to generate the scheduled report.

6. Under **Report by**, select the scope of the report:
 - All users
 - Specific user(s)
 - All groups
 - Specific group(s)

 Note: For more information about configuring specific users or groups, see *To select specific group(s):* starting on page 196 and *To select specific user(s):* starting on page 197.

7. Under **Report Type**, select the type of report to be generated:
 - Consolidated report
 - Individual report If you opt for the individual reports, select the type(s) of reports to include.

8. Under **Options**, select the chart type from the menu—either Bar, Stacked bar, or Line.
 To denote blocked traffic from unblocked traffic using different shading, select Distinguish blocked from unblocked traffic.

9. Under **Recipients**, in the **Send report notification to** field, type the email address(es) where IWSA should send a notification when a newly generated report is ready for viewing. Separate multiple email addresses with a comma.

10. Click **Save**.

 To delete scheduled reports:

 1. Click **Reports > Scheduled Reports** in the main menu.
 2. Click the tab that corresponds to the reports to delete—either Daily, Weekly, or Monthly.
 3. Select the reports to remove and then click **Delete**.
Customizing Reports

IWSA allows you to customize the number of records shown in different reports. For example, you can configure the number of users to be listed on the “Most active users” Web traffic report. The default number of records for all reports is ten.

You can configure IWSA to archive scheduled reports. The default path for archiving reports is `/etc/iscan/report` but can be modified. The default configuration is to archive 60 daily reports, 20 weekly reports, and 4 monthly reports before deleting them from the server, but you can configure the number of scheduled reports to save.

To customize the report data maintenance settings:

1. Click Reports > Customization in the main menu.
2. Under Custom the Number of Records, type the number of records to include in each of the reports.
FIGURE 65. Customizing the reports

<table>
<thead>
<tr>
<th>Report Type</th>
<th>Enabled</th>
<th>Set to Archive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daily reports</td>
<td>✔️</td>
<td>10</td>
</tr>
<tr>
<td>Weekly reports</td>
<td>✔️</td>
<td>10</td>
</tr>
<tr>
<td>Monthly reports</td>
<td>✔️</td>
<td>3</td>
</tr>
</tbody>
</table>

Blocking-event Reports
- Riskiest URLs by viruses detected: 10
- Most infected users by infected URLs: 10
- Most related by user: 10
- Most searches by group: 10
- Most blocked URLs: 10
- Most blocked Apple and ActiveX objects: 10
- Internet report: 10

Web Traffic Reports
- Most active users: 10
- Most popular URL: 10
- Most popular downloads: 10
- Most popular search engine: 10
- Top categories (weighted): 10

Spyware/Grayware Detection Reports
- Spyware/Grayware detection by category: 10
- Top spyware/grayware detections: 10
- Most infected users: 10

Cleanup Reports
- Cleanup events by category: 10
- Top cleanup events by name: 10
- Most infected IP addresses: 10

Individual User Reports
- Most popular sites visited by user: 10
- Most blocked URLs categories by user: 10
- Most blocked URLs by user: 10
3. Under **Report Archives**, type the following information in the fields provided:
 a. **Archive Directory** to save the reports (the default is `/etc/iscan/report`)

 Note: When changing the **Archive Directory**, the folder must exist on the IWSA device before it is entered into the **Report Customization** page. In order to view reports already generated, copy them over to the new folder.

 b. Number of scheduled reports to save:
 - **Daily reports** (default is 60)
 - **Weekly reports** (default is 20)
 - **Monthly reports** (default is 4)

4. Click **Save**.

Introduction to Logs

There are two types of logs available with IWSA: reporting logs and system logs.

Reporting logs provide program event information, and the IWSA Web console can be used to query and view them. These logs include:
- Virus
- URL blocking
- Performance
- URL access

System logs contain unstructured messages about state changes or errors in the software, and are only visible by viewing the log file—they cannot be seen from the Web console. System logs include:
- HTTP scan
- FTP scan
- Mail delivery daemon
- Administration, Update, and Audit trails
The database stores all log data. Log data can also be stored in text log files for compatibility with previous IWSA versions and to permit additional data analysis using customer script. Storing the log data in text log files provides redundancy to verify that the database is properly updated. Trend Micro recommends using the database as the only storage location for log data.

Options for Recording Data

IWSA uses data from reporting logs to generate reports. You can configure InterScan Web Security Appliance to write reporting log data to both the database and text logs, only to the database, or only to the text log. If you choose the text-only option, then neither reports nor logs can be viewed from within the IWSA user interface. In this case, you can only review the logs by directly opening the generated text files.

Configure reporting log options in the IWSA Web console under Logs > Settings (see Log Settings starting on page 213 for more information). Text logs provide backward compatibility with previous versions of IWSA and allow further analysis of log data through custom scripts or other third-party applications. You can also use them to validate the completeness and accuracy of the data logged to the database.

There is a performance penalty for enabling the access log (Log HTTP/FTP access events is disabled by default). If you do not enable the access log, many reports on user activities will not be available. Moreover, if IWSA is configured as an upstream proxy, valuable data on user activities may not be available. If you want InterScan Web Security Appliance to summarize all Web-related activities, enable the access log under Logs > Settings > Reporting Logs > Options.

Note: When the access log is enabled, the InterScan Web Security Appliance service is restarted. During the restart, a router may take up to 30 seconds to recognize InterScan Web Security Appliance again, during which the router will not redirect packets.
Querying and Viewing Logs

The IWSA Web console provides tools to query log files.

Audit Log

The audit log contains information that describes any configuration changes that users make to the application. For instance, once a migration or rollback procedure is activated by a user, an entry recording the migration activity is created in the audit log.

To view the audit log:

1. Click Logs > Audit Log in the main menu.
2. Under Time period, select the time for which you want a report generated.
 Click Range to view the virus log in a given time range, then select the start and end dates.
3. Under User(s), select the user(s) for which you want to view log entries. Click Add (or Add All for all users listed). To remove user(s) from the right list box, click Remove (or Remove All for all users listed).
4. Under the Sort by section, select an option by which to sort the display log.
5. Click Show Log.
 The Audit Log screen opens.
6. Click Refresh to update the screen.

Virus Log

The virus log contains information about viruses that IWSA has detected.

To view the virus log:

1. Click Logs > Virus Log in the main menu.
2. Under Time period, select the time for which you want a report generated.
 Click Range to view the virus log in a given time range, then select the start and end dates.
3. Under Viruses, select the virus(es) for which you want to view log entries. Click Add (or Add All for all viruses listed). To remove virus(es) from the right list box, click Remove (or Remove All for all viruses listed).
Chapter 9: Reports, Logs, and Notifications

FIGURE 66. Filtering virus log queries by the virus name

4. Under the Sort by section, select an option by which to sort the display log.
5. Click Show Log.
 The Virus Log screen opens.
6. Click Refresh to update the screen.

Spyware/Grayware Log
The spyware/grayware log contains information about spyware/grayware detected by IWSA, including the name of the spyware/grayware, date, action, category, scan type, file name affected, and user ID of the client involved.

To view the spyware/grayware log:
1. Click Logs > Spyware/Grayware Log in the main menu.
2. Under Time period, select a time (All Dates, Today, Last 7 days, Last 30 days).
 Click Range to select a time range, then select the start and end dates.
3. Under Grayware, select the spyware/grayware for which you want to view log entries. Click Add (or Add All for all grayware listed).
To remove grayware from the right list box, click **Remove** (or **Remove All** for all viruses listed).

4. Under the **Sort by** section, select a sort option (Grayware, Date, Action, Category, Scan Type, File Name, User ID).

5. Click **Show Log**. The **Spyware/Grayware Log** viewing screen opens.

6. Click **Refresh** to update the display.

URL Blocking Log

The URL blocking log contains information about URLs that have been blocked, including the date and time blocking occurred, category, blocking rule applied, user ID, Outbreak Prevention Policy (OPP) ID if applicable, and scan type.

To view the URL blocking log:

1. Click **Logs > URL Blocking Log** in the main menu.

2. Select a **Time period** (All Dates, Today, Last 7 days, Last 30 days).

 Click **Range** to select a time range, then select the start and end dates.

3. Under **URLs blocked**, you can add the URL(s) listed in the left list box to the right list box.

 Highlight the URL(s) to add, then click **Add** (or **Add All** for all URLs listed). To remove the list of URLs from the right list box, click **Remove** (or **Remove All** for all URLs listed).

4. Under **Sort by**, select the appropriate option to sort the display log.
 - **URL**—The blocked URL
 - **Date**—The date and time when the URL was blocked
 - **Category**—The rule defined by the user in the URL filtering, Access Quota, file blocking, and URL blocking policy
 - **Rule**—How the URL was blocked:
 - **IWSA-defined rule (block the URL containing a virus)**: Displays the URL that has been blocked
 - **URL blocking rule**: Displays the URL in the block list
 - **URL filtering rule**: Displays the policy name
 - **OPP defined rule**: Displays the OPP rule
 - **File type defined rule**: Displays blocked file type
Chapter 9: Reports, Logs, and Notifications

- **PhishTrap defined rule**: Displays a PhishTrap violation rule
- **Access Quota defined rule**: Displays access quota violation rule
- **User ID**—The IP address, host name, or LDAP user/group name associated with the client that requested the URL
- **OPP ID**—The ID number of the Outbreak Prevention Policy (OPP)
- **Scan Type**—Either access quota, file type, URL memory block list, content filter, or PhishTrap

5. Click **Show Log**. The **URL Blocking Log** viewing screen opens.
6. Click **Refresh** to update the screen.

Note: You can also find an entry in the **URL Blocking Log** when an FTP proxy blocks a file by type.

URL Access Log

The URL access log contains URL access information. IWSA writes to the URL access log only when **Log HTTP/FTP access events** is enabled (**Log HTTP/FTP access events** is disabled by default) under **Logs > Settings > Reporting Logs**. Each access monitoring record contains the following information:

- Date and time the access occurred
- User who visited the site
- IWSA device that processed the access
- IP address of the client system that requested the access

Note: Network address translation may render this data meaningless, or at least make it appear that all access occurs from a single client. Also, when the access log is enabled, the IWSA service is restarted. During the restart, a router may take up to 30 seconds to recognize IWSA again, during which the router will not redirect packets.

- Domain accessed
- Path portion of the URL (the HTTP service can get the full URL path)
- IP address of the server from which the data was retrieved
The URL category for every access event

To view the URL access log:
1. Open the IWSA Web console and click Logs > URL Access Log in the main menu.
2. Select a Time period (All Dates, Today, Last 7 days, Last 30 days) from the drop-down menu.
 Click Range to select a time range, then select the start and end dates.
3. Under Sort by, select a sort option.
5. Click Refresh to update the URL access log.

Performance Log
The performance log contains information about server performance. Each performance metric record contains:
• Date and time the metric was recorded
• IWSA device that recorded the metric
• Metric name (one of: HTTP Requests Processed, HTTP Responses Processed, Number of HTTP threads, HTTP CPU Utilization)
• Metric value

To view the performance log:
1. Open the IWSA Web console and click Logs > Performance Log in the main menu.
2. Select a Time period (All Dates, Today, Last 7 days, Last 30 days) from the drop-down menu.
 Click Range to select a time range, then select the start and end dates.
3. Under Sort by, select a sort order.
5. Click Refresh to update the screen.
FTP Get Log

The FTP Get log contains all FTP Get transaction information, including user ID, date, FTP transfer source, and file name.

To view the FTP Get log:
1. Click Logs > FTP Get Log in the main menu.
2. Select a Time period (All Dates, Today, Last 7 days, Last 30 days).
 Click Range to select a time range, then select the start and end dates.
3. Under Sort by, select a sort order.
5. Click Refresh to update the screen.

FTP Put Log

The FTP Put log contains all FTP Put transaction information, which includes user ID, date, sender identification, and file name.

To view the FTP Put log:
1. Click Logs > FTP Put Log in the main menu.
2. Select a Time period (All Dates, Today, Last 7 days, Last 30 days).
 Click Range to select a time range, then select the start and end dates.
3. Under Sort by, select a sort option.
5. Click Refresh to update the screen.

Cleanup Log

The cleanup log contains information returned by DCS after it performs a cleanup of the client machine. If no response is returned from a DCS server, there will be no entry for that cleanup request.

To view the virus log:
1. Click Logs > Cleanup Log in the main menu.
2. Select a Time period (All Dates, Today, Last 7 days, Last 30 days).
 Click Range to select a time range, then select the start and end dates.
3. Under **Malware cleaned**, select the malware name(s).
 Highlight the names to add, and then click **Add** (or **Add All** for all viruses listed). To remove malware name(s) from the right list box, click **Remove** (or **Remove All** for all viruses listed).

 Under some circumstances, DCS is unable to connect to a client machine when IWSA sends the cleanup request. Since no malware is cleaned during these attempts, querying the cleanup log by malware name will not display any information. To view logs about cleanup attempts when DCS could not successfully connect to the client machine, select **Show connection failure attempts**.

4. Under the **Sort by** section, select a sort option (Malware, Date, IP address, Action, malware Type and Subtype).

5. Click **Show Log**. The **Cleanup Log** viewing screen opens.

6. Click **Refresh** to update the screen.

Deleting Logs

If you no longer need to refer to text log files, you can delete them from the directory.

Note: The following procedure deletes text log files; logs in the database cannot be deleted manually. Configure a scheduled deletion for database logs on the **Logs > Settings** screen.

To delete one or more logs:

1. Click **Logs > Deletion** in the main menu.

2. On each of the four tabs (**Virus Log**, **URL Blocking Log**, **URL Access Log** and **Performance Log**), select the log to delete.

3. Click **Delete**, then confirm by clicking **OK** on the next screen.
FIGURE 67. Delete older URL blocking logs from the server

Log Settings

From the Log Settings screen, you can configure:

- Directories for reporting and system logs (for the text log files only)
- Number of days to keep the system logs
- Whether to gather performance data or log HTTP/FTP access events, and the logging interval for each
- Database log update interval, and the number of days to keep logs in the database
- Whether to write logs to database and log files, to the database only, or to the log file only

Note: Text log files cannot be automatically deleted—they can be manually deleted on the Logs > Deletion screen. Database logs cannot be manually deleted—a deletion schedule can be configured on the Logs > Settings screen.
Log File Folder Locations

You can configure the folders for the reporting logs and the system logs. The default location is `/etc/iscan/log`. A folder must exist on the IWSA device and you must have the correct permission before the folder can be configured as the log file location. IWSA checks after a folder path is entered, and an error message will appear if the folder entered is not accessible.

![Configure reporting log settings](image)

FIGURE 68. Configure reporting log settings
To configure reporting log directories:
1. Click Logs > Settings > Reporting Logs from the main menu.
2. In the corresponding text boxes, type the folder locations for the log files.
3. Click Save.

To configure the system log directories:
1. Click Logs > Settings > System Logs.
2. In the corresponding text boxes, type the folder locations for the log files.
3. Click Save.

Other Log Options
There are some additional settings that control how IWSA logs events. These can be configured on the Log Settings screen.

System Logs
On the System Logs tab, configure the number of days to retain system logs before automatically deleting them (default = 5 days).

Reporting Logs
On the Reporting Logs tab, you can configure IWSA to gather performance data and log HTTP/FTP access events. If you enable these, configure the logging interval.

The default time period that logs will be kept in the database is 30 days; customize this to reflect your specific environment's needs. In addition, set the time interval that the database will be updated with new logs (default = 30 seconds).

Log File Naming Conventions
By default, log files are written to the /etc/iscan/log directory. IWSA has a standard convention for naming log files. For instance, the convention for virus logs is:

virus.log.2007.01.09

which can be read as virus log for January 9, 2007
The naming conventions for each type of log are described in the table below:

<table>
<thead>
<tr>
<th>TABLE 3. Log files naming conventions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virus Log</td>
</tr>
<tr>
<td>URL Blocking</td>
</tr>
<tr>
<td>Performance Log</td>
</tr>
<tr>
<td>URL Access Log</td>
</tr>
<tr>
<td>FTP Log</td>
</tr>
<tr>
<td>HTTP Log</td>
</tr>
<tr>
<td>Mail Delivery Log</td>
</tr>
<tr>
<td>Update Log</td>
</tr>
<tr>
<td>Scheduled Update Log</td>
</tr>
<tr>
<td>Temporary Control Manager Log</td>
</tr>
<tr>
<td>Java Applet Scanning Log</td>
</tr>
<tr>
<td>Audit Log</td>
</tr>
<tr>
<td>Database Import Tool Log</td>
</tr>
<tr>
<td>World Virus Tracking Center Log</td>
</tr>
</tbody>
</table>

Note: Deleting a log will not necessarily prevent the corresponding data from appearing in the IWSA Web console. To prevent InterScan Web Security Appliance from
displaying data, you must remove the corresponding data from the appropriate database table.

TABLE 4. Major database tables for IWSA logging/reporting

<table>
<thead>
<tr>
<th>Table Name</th>
<th>Example Columns</th>
</tr>
</thead>
<tbody>
<tr>
<td>tb_url_usage</td>
<td>username, url, path</td>
</tr>
<tr>
<td>tb_report_by</td>
<td>period, category, entity_type, entity_name</td>
</tr>
<tr>
<td>tb_violation</td>
<td>username, url, file_name, action, blocked_by, category</td>
</tr>
<tr>
<td>tb_performance_value</td>
<td>server, date_field, metric_value, metric_id</td>
</tr>
</tbody>
</table>

Exporting Log and Report Data as CSV Files

When viewing your log query or a real-time report, IWSA supports exporting log data to a CSV file in order to view and analyze the data in other applications. Click Export to CSV and then download the file from the IWSA device.

The character format that IWSA uses to save CSV files is configurable using the csvcharformat parameter under the [Common] section of the intscan.ini file. The default is UTF-8 format. Some versions of Microsoft Excel cannot display double-byte characters in UTF-8 text files. If your logs contain double-byte characters, Trend Micro recommends opening and saving the files as Unicode using Notepad before attempting to open the CSV file using Excel.

Exporting Log Data to Excel

You can import data from IWSA logs into Microsoft Excel.

To import data using Microsoft Excel:

1. Open Excel, and click Data > Get External Data > New Database Query.
2. Under Choose Data Source > Databases, select IWSA* and click OK.
3. Type your logon credentials in the next screen and click OK.

4. In the Available table and columns field of the Query Wizard - Choose Columns screen, select tb_url_usage; then add to the Columns in your query field and click Next.

5. Under Query Wizard - Filter Data, filter the data to specify the rows to include in your query.

 For example, select “username” in Column to filter. Choose “begins with” in the drop-down list under Only include rows where > username, then type a text string in the field and click Next.

6. Under Query Wizard - Sort Order, specify ascending or descending sort order.

7. Click Next.

8. On the next screen, select Return Data to Microsoft Excel, then click Finish and OK.

Introduction to Notifications

Notifications can be issued in response to scanning, blocking, alerting, and program update events. There are two types of notifications—administrator notifications and user notifications:

- **Administrator notifications** provide information about HTTP scanning, HTTP file blocking, FTP blocked file type, FTP scanning, threshold alerts, restricted tunnel traffic, and Applets/ActiveX security events, as well as pattern file and scan engine updates. IWSA sends administrator notifications via email to addresses that you configure in the Email Settings screen.

- **User notifications** provide information about HTTP scanning, HTTP file blocking, FTP scanning, URL blocking, FTP blocked file type, and Applets/ActiveX scanning events. IWSA presents user notifications in the client’s browser or FTP client in lieu of the prohibited Web page or file that the client is trying to view or download.

The messages presented in both the administrator and user notifications are configurable and can include “tokens” or variables to customize notification messages with information about the event. In addition, user notification messages support HTML tags to customize the appearance of the message and provide links to other resources, such as security policy documents hosted on your intranet.
Email Notification Settings

IWSA sends administrator notifications to email addresses that you specify. The administrator enters email settings when installing IWSA and running the setup program, but email settings can also be modified post-installation in the Web console’s Email Settings screen.

To configure email settings for administrator notifications:

1. Click Notifications on the main menu.
2. On the Notifications screen, click Send notification to.
3. Type the email address to send notifications, the sender’s email address, the SMTP server, the SMTP server port and the time interval between checking the mail queue.

4. If your mail server requires ESMTP, enable Use Extended Hello (EHLO) for IWSA to initial SMTP sessions using the EHLO command.
5. Click Save.

Notification Tokens/Parameters

To make notifications more meaningful, InterScan Web Security Appliance can use tokens (or variables) as information placeholders in a notification. When an event occurs, InterScan Web Security Appliance dynamically substitutes the specific
information in place of the variable, providing detailed information about that specific event.

For example, you could create a generic notification as follows:

A virus was detected in HTTP traffic.

This notification lets you know there is a problem, but does not provide any details. Instead, you could configure the notification using variables as follows:

On %d, InterScan Web Security Appliance detected a security risk %v in the file %F. %t attempted to download the file from %f.

The notification might read as follows:

With this information, administrators can contact the client and provide more security information. The notification in this example uses five variables: %d, %v, %F, %t and %f.

The following table contains a list of variables that can be used in notification messages and pages.

TABLE 5. Description of variables

<table>
<thead>
<tr>
<th>Variable</th>
<th>Variable Meaning</th>
<th>How the Variable is Used</th>
</tr>
</thead>
<tbody>
<tr>
<td>%Y</td>
<td>Date and time</td>
<td>The date and time of the triggering event</td>
</tr>
<tr>
<td>%F</td>
<td>File name</td>
<td>The name of the file in which a risk is detected, for example, anti_virus_test_file.htm</td>
</tr>
<tr>
<td>%V</td>
<td>Malware name (virus, Trojan, etc.)</td>
<td>The name of the risk detected</td>
</tr>
<tr>
<td>%</td>
<td>The character '%' itself</td>
<td>To insert the percentage character into a notification message or page</td>
</tr>
<tr>
<td>Variable</td>
<td>Variable Meaning</td>
<td>How the Variable is Used</td>
</tr>
<tr>
<td>----------</td>
<td>------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>%f</td>
<td>From</td>
<td>The server where the infected or blocked file, or filtered URL, originated. This variable is not available for use in notifications (email or SNMP).</td>
</tr>
<tr>
<td>%A</td>
<td>Action taken</td>
<td>The action taken by IWSA</td>
</tr>
<tr>
<td>%m</td>
<td>Method</td>
<td>The processing method that triggered the event. This variable is not available for use in notifications (email or SNMP).</td>
</tr>
<tr>
<td>%M</td>
<td>Moved to location</td>
<td>The quarantine folder location where a file was moved</td>
</tr>
<tr>
<td>%H</td>
<td>IWSA host name</td>
<td>The IWSA host name where the event was triggered</td>
</tr>
<tr>
<td>%N</td>
<td>User name</td>
<td></td>
</tr>
<tr>
<td>%R</td>
<td>Transfer direction</td>
<td></td>
</tr>
<tr>
<td>%U</td>
<td>URL/URI</td>
<td></td>
</tr>
<tr>
<td>%X</td>
<td>Reasons/block type</td>
<td></td>
</tr>
</tbody>
</table>

HTTP/FTP File Type Block

| %U | URL/URI | |

The following tokens are only used in messages for administrators or in user notification messages:

%F	File name	
%A	Action taken	
%H	IWSA host name	
%R	Transfer direction	
%X	Reasons/block type	
%Y	Date and time	
%N	User name	
%V	Virus or Trojan	

Applets and ActiveX Security

<p>| %D | Protocol being scanned | |</p>
<table>
<thead>
<tr>
<th>Variable</th>
<th>Variable Meaning</th>
<th>How the Variable is Used</th>
</tr>
</thead>
<tbody>
<tr>
<td>%H</td>
<td>ISWA host name</td>
<td></td>
</tr>
<tr>
<td>%N</td>
<td>User name</td>
<td></td>
</tr>
<tr>
<td>%U</td>
<td>URL/URI</td>
<td></td>
</tr>
<tr>
<td>%W</td>
<td>Sends its own mail</td>
<td></td>
</tr>
<tr>
<td>%X</td>
<td>Reason</td>
<td></td>
</tr>
<tr>
<td>%Y</td>
<td>Date and time</td>
<td></td>
</tr>
<tr>
<td>%Z</td>
<td>Policy name</td>
<td></td>
</tr>
</tbody>
</table>

IM and IntelliTunnel Security

%D	Protocol being scanned (HTTP or FTP)	
%H	ISWA host name	
%N	User name	
%U	URL/URI	
%X	Reason (the localized name of the blocked protocol)	
%Y	Date and time	
%Z	Policy name	

URL Blocking

%H	ISWA host name (only works in header field)	
%U	URL/URI (only works in body)	
%X	Reason (only works in body)	

URL Filtering

| %U | URL/URI | |
| %X | Reason | |

Threshold Notification

| %m | Metric | |
| %t | Threshold value | |
Configuring Notifications

To configure a notification, select the types of events that will issue the notification and edit the email and browser notification messages.

Using HTML Tags in User Notifications

You can use HTML to format user notification messages. While the HTML files can include reference links to external images or styles, InterScan Web Security Appliance only supports uploading HTML files. Any additional files will have to be separately uploaded to a Web server, and Trend Micro recommends using absolute links to help avoid broken links.

Configure HTTP Scanning Notifications

When IWSA detects malicious code in a file requested by a client, it will issue an administrator notification via email and a user notification in the requesting client’s browser.

Since IntelliTrap is considered a type of security threat, it uses the same notifications as HTTP Scanning.

To configure HTTP scanning notifications:

1. Click Notifications and then click HTTP Scanning.
2. Under Administrator Notification, select the trigger detection events for sending a notification (Virus and/or Trojan and/or Other Internet threats).

 Note: IntelliTrap notification is associated with “Other Internet Threats”. Therefore, IntelliTrap notification is enabled when you select Other Internet Threats.

3. If you do not want to use the default notification message, highlight the default text and type your own version. If applicable, insert tokens in the message as described in Notification Tokens/Parameters starting on page 219.
4. Type the **Headline** to appear in the browser. The default is *IWSA Security Event (Server Name)*. The header line is common for virus infection messages, file type blocking, and URL blocking messages.

5. For **Message for downloaded file** and **Message for uploaded file**:
 a. Select **Default** to display the default warning message.
 b. Select **Customized** to display a custom message and either type or import the customized message’s content from an HTML file.
 c. Verify that the notifications appear correctly by clicking **Preview**.
6. Click Save.

Configuring HTTP File Blocking Notifications

When IWSA blocks a file, it sends an administrator notification via email, and a user notification message is displayed in the requesting client’s browser.

To configure HTTP file blocking notifications:

1. Click Notifications, then click HTTP Blocked File Type.
2. Under Administrator Notification, select Send a message when the blocked file type is accessed.
3. If you do not want to use the default notification message, highlight the default text and type your own version. If applicable, insert tokens in the text as described in Notification Tokens/Parameters starting on page 219.

![FIGURE 71. Configure HTTP blocked file notifications](image-url)
4. For **Headline**, type the header line to appear in the browser. The default headline is *IWSA Security Event (%h)*. The headline is common for virus infection messages, file type blocking, and URL blocking messages.

5. For the **Message**:
 a. Select **Default** to display the default warning message.
 b. Select **Customized** to display a custom message and either type or import content from an HTML file.

6. Verify the notifications by clicking **Preview**.
7. Click **Save**.

Configuring a User Notification Message for Blocked URLs

When IWSA detects an attempt to access a URL in the PhishTrap pattern file or a prohibited URL from the local IWSA list, IWSA displays a warning screen in the browser of the requesting client to indicate the URL was blocked.

To configure a user notification message for blocked URLs:

1. Click **Notifications** in the main menu, then click **URL Blocking**.
2. Under **User Notification Message for Restricted or Blocked URLs**:
 a. Click **Default** to display the default warning message.
 b. Click **Customized** to display your own warning message. Type the message in the text box, or **Import** it from a HTML file on your local machine.
3. Verify the notifications by clicking **Preview**.
4. Click **Save**.

Configuring FTP Scanning Notification Settings

When IWSA detects malicious code in a user’s FTP transfer, it can automatically send a customized administrator notification to the designated email addresses and/or display a notification in the requesting FTP client program.

To configure the FTP scanning notification settings:

1. Click **Notifications** on the main menu, then click **FTP Scanning**.
2. Under **Administrator Notification**, select the trigger detection events for sending a notification (*Virus* and/or *Trojan* and/or *Other malicious code*).
3. If you do not want to use the default notification messages, highlight the default text and type your own. If applicable, insert variables in the text as described in Notification Tokens/Parameters starting on page 219.

![Configure FTP scanning notifications](image)

FIGURE 72. Configure FTP scanning notifications

4. For the user notification **Message**:
 a. Select **Default** to display the default warning message.
 b. Select **Customized** to display a custom message and type the customized content.

5. Click **Save**.
Configuring IntelliTunnel Security Notification Settings

When IWSA detects restricted tunnel traffic across port 80, the application blocks this traffic and sends an email to the address specified on the IntelliTunnel Notification page. See IntelliTunnel Security on page 108.

To configure the IntelliTunnel security notification settings:

1. Click Notifications in the main menu, then click IntelliTunnel.
2. Under Administrator Notification, select Send a message when restricted tunnel traffic is detected.

3. If you do not want to use the default notification messages, highlight the default text and type your own version. If applicable, insert variables in the text as described in Notification Tokens/Parameters starting on page 219.
4. Click Save.

Configuring Applets and ActiveX Security Notification Settings

When IWSA detects an attempt to download a Java Applet or ActiveX object that violates a security policy, the application sends an administrator notification via email and a user notification message in the requesting client’s browser.

To configure the Applets and ActiveX security notification settings:

1. Click Notifications in the main menu, then click Applets and ActiveX Instrumentation.
2. Under Administrator Notification, select Send a message when a malicious Applet or ActiveX attempt is detected.

3. If you do not want to use the default notification messages, highlight the default text and type your own version. If applicable, insert variables in the text as described in Notification Tokens/Parameters starting on page 219.

4. For the User Notification Messages:
 a. Select Default to display the default warning message.
 b. Select Customized to display a custom message and either type or Import the customized message’s content.

5. Click Save.

Enabling Pattern File Update Notifications

IWSA can send notifications when the product attempts to update engines or pattern files.
To enable pattern file update notifications:

1. Click **Notifications** from the main menu, then click **Pattern File Updates**.

2. For the pattern update attempts:

 a. Select the update events that will trigger a notification. You can configure notifications for **Successful**, **Unsuccessful** or **Not needed** update attempts.

 b. Type a **Subject** for the notification message

3. Click **Save**.

Enabling URL Filtering and Scan Engines Update Notifications

Though less frequent than pattern file updates, Trend Micro periodically releases new versions of the scan engine to reflect advances in virus and malicious code detection methods. IWSA can issue administrator notifications in response to scan engine updates.

To enable URL Filtering and Scan Engines Update Notifications:

1. Click **Notifications** from the main menu, then click **URL Filtering and Scan Engines Update**.
For scan engine and/or URL filtering engine, select the update events to trigger a notification.
You can configure notifications for Successful, Unsuccessful or Not needed update attempts.

3. For scan engine and/or URL filtering engine, type the Subject of the notification email message.

4. Click Save.

Enabling Threshold Alerts Notifications

You can specify threshold alert values and the frequency of alerts so that you are notified when any of the following reach a critical level:

- Virus
- Spyware
- Database
• Hard drive
• Bandwidth

IWSA can send these alerts either through email, SNMP trap/notification (if enabled), or both. See *Email Notification Settings* on page 219 and *Enabling SNMP Trap Notifications* on page 233.

To enable threshold alert notifications:

1. Click *Notifications* in the main menu, then click *Threshold Alerts*.
2. Under *Thresholds*, specify the desired thresholds and either accept the defaults or specify new values in the *Threshold Value* and *Limit 1 Notification Every* columns.

![Threshold Alert Settings](image)

3. If you do not want to use the default notification messages under *Notification Message*, highlight the default text and type your own version. If applicable, insert variables in the text as described in *Notification Tokens/Parameters* starting on page 219.
4. Click *Save*.
Enabling SNMP Trap Notifications

IWSA supports sending SNMP traps in response to security, update, or program events.

In order to send SNMP traps, you first need to configure the SNMP settings and then enable this feature. To do this, choose Administration > IWSA Configuration > SNMP Settings.

To enable sending SNMP traps:

1. Click Notifications on the main menu and then click SNMP Notification Settings.

![Configure SNMP notifications](image)

2. Select the types of events that will trigger an SNMP trap. The different classes of events are:
 - **Virus or Internet threats**—Events related to virus or malicious code detections
 - **Security violations**—Activities that are prohibited by IWSA policies, not related to viruses or malicious code
 - **Pattern, database or scan engine updates**—Events related to IWSA updates
 - **IWSA service interruptions**—Issues with any of the essential IWSA services
• **System performance metric**—IWSA periodically sends an SNMP trap with the following performance data:
 • CPU load percentage
 • Memory load percentage
 • Disk load percentage
 • Concurrent connection (ICAP request and response mode and proxy mode)
 • Incoming and outgoing throughput (bytes per second)

3. Click **Save**.
After opening the IWSA console, test the following to verify that the program is working properly. There are six types of test to perform:

- Upload scanning
- FTP scanning
- URL blocking
- Download scanning
- URL filtering
- Applets and ActiveX scanning

EICAR Test File

The European Institute for Computer Antivirus Research (EICAR) has developed a test virus to test your antivirus appliance. This script is an inert text file. The binary pattern is included in the virus pattern file from most anti-virus vendors. The test virus is not a virus and does not contain any program code.

WARNING! Never use real viruses to test your Internet security.
Download the EICAR test virus from the following URLs:
http://www.eicar.org/anti_virus_test_file.htm

Alternatively, you can create your own EICAR test virus by typing or copying the following into a text file, and then naming the file eicar.com:
X5O!P%@AP[4&PZX54(P^)7CC)7}$EICAR-STANDARD-ANTIVIRUS-TEST-FILE!$H+H*

Note: Flush the URL cache (HTTP > Configuration > URL Cache) and local browser before testing. If either cache contains a copy of the test virus, it's possible an attempt to download the file would get the file from the cache, rather than getting it from the Internet, and IWSA would not detect the file.

Testing Web Reputation

To test Web Reputation, open a Web browser and type the following in the address field:
http://wr21.winshipway.com

If the test is successful, you should receive an IWSA Security Event message stating, “This URL has a Web security rating that prohibits it from being accessed.”

Testing Upload Scanning

Trend Micro recommends that you test virus scanning of Web-based mail attachments.

To test virus scanning of Web-based mail attachments:

1. Open the IWSA console and click HTTP > Scan Policies in the main menu. Clear Enable virus scanning, and then click Save.

2. Download the test virus from the following page:
http://www.eicar.org/anti_virus_test_file.htm

3. Save the test virus on your local machine.

4. Re-open the IWSA console, under HTTP > Scan Policies in the main menu, select Enable virus scanning, and then click Save.
5. Send a message with one of the test viruses as an attachment by using any Internet mail daemon. A message similar to the following should appear in your browser.

![Warning Screen](image)

FIGURE 79. This warning screen shows the detection of an EICAR test virus.

Testing FTP Scanning

The following procedure contains instructions to test FTP virus scanning in stand-alone mode.

To test virus scanning of FTP traffic:

1. Download the test virus from the following page:

 http://www.eicar.org/anti_virus_test_file.htm

2. Access the FTP server through IWSA working as the FTP proxy.

 For example, assume the following IP addresses: IWSA FTP proxy server (10.2.10.2), FTP server (10.2.10.10).

 Open a command line prompt and type the following:

 ftp 10.2.10.2

3. Log on as user@host. For example, if your FTP account name is anonymous and the IP address of the FTP server is 10.2.10.10, then log on as anonymous@10.2.10.10

4. Upload the test virus (for example, eicar_com.zip) by typing the command

 put eicar_com.zip
5. If you have configured the IWSA FTP proxy correctly, IWSA displays a message similar to the following.

![Screenshot of FTP log](image)

FIGURE 80. This is a warning message that shows the detection of a virus in eicar_com.zip.

Testing URL Blocking

Before attempting to test URL blocking, you must configure the correct proxy settings on the Proxy Scan Settings screen (click HTTP > Configuration > Proxy Scan Settings in the main menu).

To test URL blocking:

1. From the main menu, click HTTP > URL Access Control > URL Blocking in and then select Enable URL blocking.
2. Select either Web site, URL keyword, or String to specify the match type.
3. In the Match field, type either the full Web address, URL keyword, or exact-match string.
4. Click Block and then Save.
5. Open a Web browser and try to access the blocked Web site, a URL containing the string, or the exact-match string. A message appears in the browser.

Testing Download Scanning

To test virus scanning when downloading using HTTP or FTP over HTTP, attempt to download the test virus from the following Web site:

http://www.eicar.org/anti_virus_test_file.htm

![Image of virus warning screen]

FIGURE 81. The above virus-warning screen opens if the system is set up properly.

If a client attempts to download an infected file, IWSA blocks other users’ access to that site for four hours by default. When other clients subsequently attempt to access the same URL that contained the virus, the user will see a URL blocking message instead of the virus-warning message.

Configure the default block time (in hours) by changing the parameter `infected_url_block_length` under the `[Scan-configuration]` section of the `intscan.ini` file.

Testing URL Filtering

Trend Micro recommends that you use the default setting to test URL filtering.

1. Click **HTTP > URL Filtering > Settings** from the main menu and in the Schedule tab, configure the work days and times.

2. Click **HTTP > URL Filtering > Policies** from the main menu.

3. Select **Enable URL filtering** and then click **Save**.
4. Click **URL Filtering Global Policy** and select the categories that you want blocked during work and leisure times.

5. Click **Save** to save any changes. Click **Deploy Policies** to make a policy effective immediately.

6. Open a browser and access any site that is categorized to be blocked at the time of the test.

Testing Java Applet and ActiveX Scanning

Java applets and ActiveX controls are used on many Web pages to display interactive content or applications. One way to test IW SA is to temporarily configure the global policy to block all applets and ActiveX controls, and then attempt to open Web pages that use them (to verify that the applet or object is blocked).

To test Java applet and ActiveX scanning:

1. Click **HTTP > Applets and ActiveX > Policies** from the main menu.

2. If necessary, select **Enable Applet/ActiveX security** and click **Save**.

3. Click **Applet/ActiveX Security Global Policy**.

4. On the **Java Applet Security Rules** tab, click **Block all Java applets** and then **Save**.

5. On the **ActiveX Security Rules** tab, click **Block all cabinet files** and **Block all PE format files** and then click **Save**.

6. From the **Applets and ActiveX Policies** screen, select **Deploy Policies Now** to make policy changes effective immediately.

7. Open a Web browser and attempt to navigate to Web sites that use Java applets and ActiveX controls, for example, for stock price tickers or games.
IW SA blocks the mobile code from downloading and running in your browser.

Note: Blocking all Java applets and ActiveX controls may be too restrictive for your environment since it will prevent many legitimate Web sites from functioning properly. After testing, Trend Micro recommends going back to the **Applets and ActiveX Policy: Edit Global Policy** screen to change the settings back to the default or your own less-restrictive configuration.
Additional IWSA Configurations

This section briefly introduces some common IWSA configuration tasks

Securing the IWSA Console

By default, the IWSA console is accessed via HTTP connection on port 1812. For improved security, Trend Micro recommends that you use a Secure Socket Layer connection (HTTPS). You will need to provide a public key and certificate.

To connect to the IWSA device HTTPS:

1. From the main menu, click Administration > Web Console and choose SSL Mode to enable a secure connection to the IWSA console.
2. In the SSL Certificate field, click Browse to locate the certificate you will use, and then Upload to import it to the IWSA device.
3. Type the password associated with the SSL certificate, if any.
4. Type the port on which you want to open the IWSA console and then click Save. For example:

 https://<IWSA device IP address:port>

Note: Non-SSL mode is the default; use it to access the IWSA console using a non-secure URL; for example:

 http://<IWSA device IP address:port>

 The default non-secure port is 1812; you can change it to any unused port (recognized by the firewall).

Specifying HTTP Scanning

HTTP scanning is enabled by default. The HTTP traffic flow for clients to browse the Web and perform other HTTP operations can be enabled and disabled (see Enabling the HTTP Traffic Flow on page 32).
Specifying the User Identification Method

IWSA supports several ways to identify clients when configuring a policy’s scope (see Configuring the User Identification Method on page 66). The default identification method is through the client’s IP address. IWSA also supports identifying clients through their host name or MAC address and through an LDAP directory.

Enabling the Guest Account (LDAP only)

When using the User/group name via proxy authorization identification method, virus scanning, Java applets and ActiveX security, URL filtering, and access quota policies all support configuring policies for users temporarily visiting your network. These guest policies are applied to clients that connect to IWSA via the “guest” port. The guest account is disabled by default—enable it to allow guests Internet access.

To enable the guest account and configure the guest port:
1. Click HTTP > Configuration > Proxy Scan Settings from the main menu.
2. Select the Enable guest account check box.
 The default value in the Port number field is 8081 and typically does not have to be modified unless the port is already in use.
3. Click Save.

Reviewing Scanning and Filtering Policies

IWSA is pre-configured to provide a baseline level of gateway security. Trend Micro recommends reviewing the HTTP virus scanning Global and Guest policy configurations to ensure they reflect your organization’s security policies.

Additionally, if you are running the Applets and ActiveX security, URL filtering and FTP scanning modules, review those configurations and modify accordingly.

Enabling Access Quota Policies

To limit bandwidth consumption, enable access quota control to set a maximum amount of data that a client can retrieve or download during a given time period.
To enable access quota control:
1. Click HTTP > Access Quota Policies on the main menu.
2. Select Enable access quota control.
3. To configure access quota control for your network’s guest users, click Access Quota Guest Policy and configure the settings. To configure access quota control for other network users, click Add and configure a new policy.
4. Click Save.
 For the new policy to take effect immediately, click Deploy Policies in the HTTP > Access Quota Policies page.

Setting Access Control Settings
The default IWSA settings allow all non-guest clients to access the Internet. To allow a subset of your clients Internet access, configure the IP addresses allowed to do so on the Access Control Settings screen.

In addition, IWSA can be configured to exempt some servers from scanning, URL filtering, and URL blocking to speed up browsing performance when visiting trusted sites. For example, consider adding the IP address ranges of your intranet sites to the Server IP approved list to exempt frequently visited sites from scanning and filtering.

To configure which clients are allowed to access the Internet:
1. Click HTTP > Configuration > Access Control Settings from the main menu.
2. On the Client IP tab, select Enable HTTP access based on client IP and enter the IP addresses that are allowed to access the Internet.
3. On the Approved Server IP List tab, configure the IP addresses of servers that will be exempted from scanning, URL filtering, and URL blocking.
4. Click Save.

Adding or Removing a System Patch
From time to time, Trend Micro makes available system patches via the Update Center. After downloading the latest patch from the Update Center to a desktop or other computer, you can upload it to the IWSA device where it will be automatically installed.
The patch uninstall utility will only remove the last patch installed. For example, if you have installed four patches over a one-year period, you can only remove the 4th patch—not the 4th, 3rd, 2nd, etc.

To add a system patch:

1. From the main menu, click Administration > System Patch and then click the **Browse** button.

2. Locate the patch you downloaded from the Trend Micro Update Center, and then click **Upload** to have IWSA copy the patch to the IWSA device and begin installing.

 Only a properly formatted and encrypted Trend Micro patch can be upload from this utility.

To remove a system patch:

1. From the main menu, click Administration > System Patch and then click the **install** link for the most recently installed patch. The preview page appears, where you can confirm the version of the patch you want to remove.

 You can remove the most recently installed system patch at any time.

2. After reviewing the version, etc. click **Uninstall**. A progress page appears. After the patch has been removed, close the window to return to the main IWSA console.

About Hot Fixes, Patches, and Service Packs

After an official product release, Trend Micro often develops hot fixes, patches, and service packs to address issues, enhance product performance, or add new features.

The following is a summary of the items Trend Micro may release:

- **Hot fix**: A workaround or solution to a single customer-reported issue. Hot fixes are issue-specific, and therefore not released to all customers. Windows hot fixes include a setup program.

- **Security Patch**: A hot fix focusing on security issues that is suitable for deployment to all customers.

- **Patch**: A group of hot fixes and security patches that solve multiple program issues. Trend Micro makes patches available on a regular basis.

- **Service Pack**: A consolidation of hot fixes, patches, and feature enhancements significant enough to be considered a product upgrade. You can obtain hot fixes
from your Technical Account Manager. Check the Trend Micro Knowledge Base to search for released hot fixes:

- http://esupport.trendmicro.com/support/

Check the Trend Micro Web site regularly to download patches and service packs:

- http://www.trendmicro.com/download

All releases include a readme file with the information you need to install, deploy, and configure your product. Read the readme file carefully before installing the hot fix, patch, or service pack file(s).

Updating the IWSA Operating System

Occasionally, Trend Micro makes available updates to the Linux™ Kernel (including supporting utilities and libraries) and posts them to the Trend Micro Update Center. OS updates available from other sources should never be applied to IWSA. Check the Trend Micro Update Center for OS updates.

Note: After updating, the IWSA device restarts. Whether it continues to pass network traffic during this time depends on the installation mode (Bridge, HTTP proxy, or ICAP) and the fail-open status.

You can update the Linux Operating System running on IWSA remotely, from any machine on the network.

To update the operating systems:

1. Download an authorized OS update from Trend Micro to the machine displaying the IWSA console.
2. Open the IWSA Web console and click **Administration > Update OS.**
3. Click **Browse** to locate that file for transfer to IWSA.
4. Click **Update** to automatically transfer and install the OS update to IWSA.

Checking the Database Connection

When you are setting up a database for multiple IWSA configurations, specify the same database for all IWSA devices.
To check the database connection settings:

1. Click Administration > IWSA Configuration > Database.
2. Under Database Connection Settings, view the database settings.
3. Click Test Database Connection.

![Database settings](image)

FIGURE 82. To verify that the database connection is working, click Test Database Connection

Policy settings are stored in the database, and IWSA copies the settings to a memory cache. IWSA reloads the settings from the database into memory according to the time to live (TTL) interval.

To configure Time to Live (TTL):

1. Open the IWSA Web console and click Administration > IWSA Configuration > Database.
2. Under Cache Expiration (TTL in Minutes), type a value for the following parameters:
 - Access quota policy
• Applets and ActiveX policy
• IntelliTunnel policy
• URL filtering policy
• Virus scan policy

3. Click Save.

Changing the Management Console Password

The Web console password is the primary means to protect your IWSA device from unauthorized changes. For a more secure environment, change the console password on a regular basis and use a password that is difficult to guess.

The following tips will help you design a safe password:
• Include both letters and numbers in your password
• Avoid words found in any dictionary, of any language
• Intentionally misspell words
• Use phrases or combine words
• Use both uppercase and lowercase letters

To change the console password:
1. Open the IWSA console and click Administration > Login Accounts in the main menu.
2. Click the user account for which you want to change the password.
3. From the Edit Login Account page, type the new password in the Password field and then again in the Confirm Password field.
4. Click Save.
FIGURE 83. Use a difficult password (password is case-sensitive) with 4 to 32 alphanumeric characters

Configurations After Changing the Console Listening Port

When users enable the HTTPS mode by accessing the Administration > Web Console screen and setting Port number for SSL mode to 8443, they should also specify this port number in the HTTP > Configuration > Access Control Settings screen (see Using SSL with Damage Cleanup Services (DCS) on page 248).

If this port number is not specified in the Access Control Settings screen, the consequence could be that the IWSA progress page is blocked by IWSA itself, when using the HTTPS Web console. In other words, when clients try to access URLs, they would see the progress bar blocked by IWSA.

Using SSL with Damage Cleanup Services (DCS)

To redirect clients to DCS to clean up malicious code when you are using the HTTPS-enabled Web console, access to the secure port that IWSA uses (typically
8443) must be enabled. Otherwise, redirection to DCS will not be successful, since the redirection request will be blocked.

To allow access to secure port 8443:

1. Click **HTTP > Configuration > Access Control Settings**, and make the **HTTPS Ports** tab active.
2. **Allow** access to the **Port** used for HTTPS traffic (typically 8443).
3. Click **Add** and then **Save**.

![FIGURE 84. Secure access (e.g. 8443) for DCS and/or the IWSA console.](image)

In addition, two parameters in the `[http]` section of the `intscan.ini` file need to be modified when IWSA is configured to use HTTPS:

```ini
iscan_web_server=[user defined https port, e.g., 8443]
iscan_web_protocol=https
```

Verifying URL Filtering Settings

If you are running the optional URL filtering module, review the post-install tasks here to prepare IWSA for your environment.
IWSA accesses the Web Reputation database that contains URLs in over 60 categories, such as “gambling,” “games,” and “personals/dating.” These categories are contained in logical groups.

Trend Micro recommends reviewing the URL filtering settings to ensure that the categories that qualify as company-prohibited sites reflect the values of your organization and do not affect your employees’ business-related Web browsing. Before rolling out URL filtering policies, Trend Micro recommends verifying that the default categorizations are appropriate for your organization. For example, a clothing retailer might need to remove a swimsuit Web site from the “Intimate Apparel/Swimsuit” category located in the Adult group in order to allow legitimate market and competitor research.

Additionally, you may need to configure URL exceptions to enable employee access to specific sites that would otherwise be blocked, and review the definitions of “work time” to ensure it reflects your workplace schedule.

To review URL filtering settings:

1. Click HTTP > URL Filtering > Settings from the main menu.
2. On the Approved URL List tab, enter or import Web sites to be exempt from URL filtering so that they will always be accessible to your clients.
3. On the Schedule tab, the default setting for “work time” is Monday to Friday, from 08:00 to 11:59, and from 13:00 to 17:00. Modify these time settings according to employee schedules in your workplace.
4. Click HTTP > URL Filtering > Policies from the main menu and review the category settings of the URL Filtering Guest Policy and URL Filtering Global Policy.

IWSA Performance Tuning

If you are experiencing issues with slow browsing performance, consider the modifications described in this section.

LDAP Performance Tuning

When running IWSA to use the user/group name via proxy authorization identification method (LDAP), HTTP proxy performance becomes dependent upon
the responsiveness of the LDAP directory server. In a worst case scenario, every HTTP request would require an LDAP query to authenticate the user’s credentials, and another to retrieve group membership information for that user. These queries introduce latency in terms of the transmit/receive delay between IWSA and the LDAP server, and add load to the LDAP server itself.

LDAP Internal Caches

To reduce the amount of LDAP queries required, IWSA provides several internal caches:

- **User group membership cache**: This cache can store the group membership information for several hundred users. By default, entries in this cache will be valid for 48 hours, or until the cache fills (at which point entries are replaced, starting with the oldest). The time to live (TTL) for entries in this cache can be configured via the setting “user_groups_central_cache_interval” in the [user-identification] section of intscan.ini configuration file.

- **Client IP to User ID cache**: This cache associates a client IP address with a user who recently authenticated from that same IP address. Any request originating from the same IP address as a previously authenticated request will be attributed to that user, provided the new request is issued within a configurable window of time (15 minutes by default for HTTP, 90 minutes for ICAP) from that authentication. The caveat is that client IP addresses seen by IWSA must be unique to a user within that time period; thus this cache is not useful in environments where there is a proxy server or source NAT between the clients and IWSA, or where DHCP frequently reassigns client IPs. To enable or disable this cache, change the “enable_ip_user_cache” setting in the [user-identification] section of intscan.ini. To change the TTL of this cache, change the “ip_user_central_cache_interval” (unit is hours). For example, to create a TTL of 30 minutes, enter “0.5”.

- **User authentication cache**: This avoids re-authenticating multiple HTTP requests passed over a persistent connection. When users pass the credential validation over a persistent connection, IWSA adds an entry (two important keys in one cache entry are the client’s IP address and the client’s user name) in the user authentication cache so the subsequent requests over a keep-alive connection will not authenticate again. The client IP address and client’s user name serve as two forward references, or links, to the “client IP to user ID cache”
and “user group membership cache,” respectively. IWSA will thus still be able to retrieve the user’s connection information from both the IP-user and user-group caches.

When deploying IWSA with LDAP integration, it is important to consider the additional load that authenticating HTTP requests will place on the LDAP directory server. In an environment that cannot effectively use the client IP to user ID cache, the directory server will need to be able to handle queries at the same rate as IWSA receives HTTP requests.

Disable Verbose Logging When LDAP Enabled

Trend Micro recommends turning off verbose logging in the `intscan.ini` file, under the `[http]` section, “verbose” parameter, when LDAP is enabled for server performance reasons. Verbose logging is primarily used by software developers to identify abnormal application behavior and troubleshooting. In a production deployment, verbose logging is usually unnecessary.

If verbose logging is enabled and LDAP is also enabled, IWSA will log user authentication information and group membership information in the HTTP log in the Log folder. Logs may contain hundreds of lines per user and, therefore, significantly consume disk space, depending on the amount of internal traffic and the number of groups a user is associated with. Verbose logging keeps the service busy by issuing I/O operations to the operating system. This may prevent the service from responding to HTTP requests in a timely fashion, hence latency may occur. In an extreme bursting HTTP traffic environment, it’s possible to observe significant delays when IWSA starts up in verbose mode.
Appendix A

Contact Information and Web-based Resources

This appendix provides information to optimize the IWSA performance and get further assistance with any technical support questions you may have.

Topics in this appendix include:

- Contacting technical support
- Submitting suspicious files to Trend Micro for analysis
- Web-bases resources
Contacting Technical Support

In the United States, Trend Micro representatives can be reached via phone, fax, or email. Our Web site and email addresses follow:

http://www.trendmicro.com
http://esupport.trendmicro.com/
support@trendmicro.com

General US phone and fax numbers follow:
Voice: +1 (408) 257-1500 (main)
Fax: +1 (408) 257-2003

Our US headquarters is located in the heart of Silicon Valley:

Trend Micro, Inc.
10101 N. De Anza Blvd.
Cupertino, CA 95014

IWSA Core Files for Support

IWSA will generate a core file containing the system data held in memory when a process is abnormally terminated.

Raw core files are created in the var/iwss/coredumps directory on the IWSA device. They are then compressed and moved to /var/iwss/userdumps. You can use these files when working with Trend Micro technical support to help diagnose the cause of the problem.

To access the core files:
• From the main IWSA menu, click Administration > Support.

To inspect the files yourself, use a program like GDB, the GNU Project debugger.
FIGURE 85. Trend Micro Technical Support site

Knowledge Base

The Trend Micro Knowledge Base is a 24x7 online resource that contains thousands of do-it-yourself technical support procedures for Trend Micro products. Use Knowledge Base, for example, if you are getting an error message and want to find out what to do to. New solutions are added daily.

Also available in Knowledge Base are product FAQs, hot tips, preventive antivirus advice, and regional contact information for support and sales.

http://esupport.trendmicro.com/

And, if you can't find an answer to a particular question, the Knowledge Base includes an additional service that allows you to submit your question via an email message. Response time is typically 24 hours or less.
Sending Suspicious Code to Trend Micro

You can send your viruses, infected files, Trojans, suspected worms, spyware, and other suspicious files to Trend Micro for evaluation. To do so, visit the Trend Micro Submission Wizard URL:

http://subwiz.trendmicro.com/SubWiz

Click the “Submit a suspicious file/undetected virus” link.

You are prompted to supply the following information:

- **Email**: Your email address where you would like to receive a response from the antivirus team.
- **Product**: The product you are currently using. If you are using multiple Trend Micro products, select the product that has the most effect on the problem submitted, or the product that is most commonly in use.
- **Number of Infected Seats**: The number of users in your organization that are infected.
- **Upload File**: Trend Micro recommends that you create a password-protected zip file of the suspicious file, using the word “virus” as the password—then select the protected zip file in the Upload File field.
- **Description**: Please include a brief description of the symptoms you are experiencing. Our team of virus engineers will “dissect” the file to identify and characterize any risks it may contain and return the cleaned file to you, usually within 48 hours.

Note: Submissions made via the submission wizard/virus doctor are addressed promptly and are not subject to the policies and restrictions set forth as part of the Trend Micro Virus Response Service Level Agreement.

When you click **Next**, an acknowledgement screen opens. This screen also displays a Tracking Number for the problem you submitted.

If you prefer to communicate by email, send a query to the following address:

virusresponse@trendmicro.com

In the United States, you can also call the following toll-free telephone number:

(877) TRENDAV, or 877-873-6328
TrendLabs

TrendLabs is Trend Micro’s global infrastructure of antivirus research and product support centers that provide customers with up-to-the-minute security information.

The “virus doctors” at TrendLabs monitor potential security risks around the world, to ensure that Trend Micro products remain secure against emerging risks. The daily culmination of these efforts are shared with customers through frequent virus pattern file updates and scan engine refinements.

TrendLabs is staffed by a team of several hundred engineers and certified support personnel that provide a wide range of product and technical support services. Dedicated service centers and rapid-response teams are located in Tokyo, Manila, Taipei, Munich, Paris, and Lake Forest, CA.

Security Information Center

Comprehensive security information is available over the Internet, free of charge, on the Trend Micro Security Information Web site:

http://www.trendmicro.com/vinfo/

Visit the Security Information site to:

• Read the Weekly Virus Report, which includes a listing of risks expected to trigger in the current week, and describes the 10 most prevalent risks around the globe for the current week
• View a Virus Map of the top 10 risks around the globe
Consult the Virus Encyclopedia, a compilation of known risks including risk rating, symptoms of infection, susceptible platforms, damage routine, and instructions on how to remove the risk, as well as information about computer hoaxes.

Download test files from the European Institute of Computer Anti-virus Research (EICAR), to help you test whether your security product is correctly configured.

Read general virus information, such as:
- The Virus Primer, which helps you understand the difference between viruses, Trojans, worms, and other risks
- The Trend Micro Safe Computing Guide
- A description of risk ratings to help you understand the damage potential for a risk rated Very Low or Low vs. Medium or High risk
- A glossary of virus and other security risk terminology
- Download comprehensive industry white papers
Appendix A: Contact Information and Web-based Resources

FIGURE 87. Trend Micro Security Information screen

- Subscribe, free, to Trend Micro’s Virus Alert service, to learn about outbreaks as they happen, and the Weekly Virus Report
- Learn about free virus update tools available to Webmasters

To open Security Information:

1. Open the IWSA Web console.
2. Click Security Info from the drop-down menu at the top-right panel of the screen. The Security Information screen opens.
Mapping File Types to MIME Content-types

The following table describes file types that you can enter in the HTTP and FTP virus scanning policy Other file types fields to block corresponding MIME content-types. For example, if you type afc, both the audio/aiff and audio/x-aiff MIME content-types will be blocked.

<table>
<thead>
<tr>
<th>File type</th>
<th>MIME content-type</th>
<th>File type</th>
<th>MIME content-type</th>
<th>File type</th>
<th>MIME content-type</th>
</tr>
</thead>
<tbody>
<tr>
<td>afc</td>
<td>audio/aiff</td>
<td>avs</td>
<td>video/av-video</td>
<td>bin</td>
<td>application/x-binary</td>
</tr>
<tr>
<td>afc</td>
<td>audio/x-aiff</td>
<td>audiovideo</td>
<td>video/</td>
<td>binhex</td>
<td>application/binhex</td>
</tr>
<tr>
<td>ani</td>
<td>application/octet-stream</td>
<td>base64</td>
<td>application/base64</td>
<td>binhex</td>
<td>application/binhex4</td>
</tr>
<tr>
<td>arc</td>
<td>application/octet-stream</td>
<td>bin</td>
<td>application/mac-binary</td>
<td>binhex</td>
<td>application/mac-binhex</td>
</tr>
<tr>
<td>File type</td>
<td>MIME content-type</td>
<td>File type</td>
<td>MIME content-type</td>
<td>File type</td>
<td>MIME content-type</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------------</td>
<td>-----------</td>
<td>-------------------</td>
<td>-----------</td>
<td>-------------------</td>
</tr>
<tr>
<td>arj</td>
<td>application/octet-stream</td>
<td>bin</td>
<td>application/octet-stream</td>
<td>binhex</td>
<td>application/mac-binhex40</td>
</tr>
<tr>
<td>asf</td>
<td>video/x-ms-asf</td>
<td>bin</td>
<td>application/octet-stream</td>
<td>binhex</td>
<td>application/x-binhex40</td>
</tr>
<tr>
<td>bin</td>
<td>application/x-macbinary</td>
<td>bmp</td>
<td>image/bmp</td>
<td>bmp</td>
<td>image/x-windows-bmp</td>
</tr>
<tr>
<td>bw</td>
<td>image/x-sgi-bw</td>
<td>bz32</td>
<td>application/x-bz32</td>
<td>cgm</td>
<td>image/cgm</td>
</tr>
<tr>
<td>cmx</td>
<td>application/x-cmx</td>
<td>cmx</td>
<td>image/x-cmx</td>
<td>com</td>
<td>application/octet-stream</td>
</tr>
<tr>
<td>core</td>
<td>application/octet-stream</td>
<td>cpio</td>
<td>application/x-cpio</td>
<td>dcr</td>
<td>application/x-director</td>
</tr>
<tr>
<td>doc</td>
<td>application/wordperfect</td>
<td>dwg</td>
<td>application/acad</td>
<td>dwg</td>
<td>application/x-acad</td>
</tr>
<tr>
<td>dwg</td>
<td>drawing/x-dwg</td>
<td>dwg</td>
<td>image/vnd.dwg</td>
<td>dwg</td>
<td>image/x-dwg</td>
</tr>
<tr>
<td>eps</td>
<td>application/postscript</td>
<td>eps</td>
<td>image/x-eps</td>
<td>exec</td>
<td>application/octet-stream</td>
</tr>
<tr>
<td>exec</td>
<td>application/x-msdownload</td>
<td>exe</td>
<td>application/octet-stream</td>
<td>fh9</td>
<td>image/x-freehand</td>
</tr>
</tbody>
</table>
Appendix B: Mapping File Types to MIME Content-types

<table>
<thead>
<tr>
<th>File type</th>
<th>MIME content-type</th>
<th>File type</th>
<th>MIME content-type</th>
<th>File type</th>
<th>MIME content-type</th>
</tr>
</thead>
<tbody>
<tr>
<td>fli</td>
<td>video/x-fli</td>
<td>fm</td>
<td>application/vnd.frame-maker</td>
<td>gif</td>
<td>image/gif</td>
</tr>
<tr>
<td>gzip</td>
<td>application/x-gzip</td>
<td>gzip</td>
<td>encoding/x-gzip</td>
<td>hpxe</td>
<td>application/octet-stream</td>
</tr>
<tr>
<td>iff</td>
<td>audio/x-aiff</td>
<td>java</td>
<td>text/x-java-source</td>
<td>java</td>
<td>application/java-class</td>
</tr>
<tr>
<td>java</td>
<td>application/x-java-applet</td>
<td>java</td>
<td>application/x-java-applet</td>
<td>java</td>
<td>text/x-java-source</td>
</tr>
<tr>
<td>java</td>
<td>application/java-class</td>
<td>java</td>
<td>application/x-java-applet</td>
<td>java</td>
<td>application/java-applet</td>
</tr>
<tr>
<td>jpeg</td>
<td>image/jpeg</td>
<td>jpeg</td>
<td>image/jpeg</td>
<td>lha</td>
<td>application/x-lha</td>
</tr>
<tr>
<td>lisp</td>
<td>application/x-lisp</td>
<td>maud</td>
<td>audio/x-maud</td>
<td>midi</td>
<td>audio/midi</td>
</tr>
<tr>
<td>mif</td>
<td>application/x-mif</td>
<td>mng</td>
<td>video/x-mng</td>
<td>mp3</td>
<td>audio/mpeg</td>
</tr>
<tr>
<td>mp3</td>
<td>audio/mpeg3</td>
<td>mp3</td>
<td>audio/x-mpeg3</td>
<td>mp3</td>
<td>video/mpeg</td>
</tr>
<tr>
<td>mp3</td>
<td>video/x-mpeg</td>
<td>mpeg</td>
<td>video/mpeg</td>
<td>mscab</td>
<td>application/x-cainet-win32-x86</td>
</tr>
<tr>
<td>msdoc</td>
<td>application/msword</td>
<td>msexl</td>
<td>application/excel</td>
<td>msexl</td>
<td>application/x-msexcel</td>
</tr>
<tr>
<td>File type</td>
<td>MIME content-type</td>
<td>File type</td>
<td>MIME content-type</td>
<td>File type</td>
<td>MIME content-type</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------------</td>
<td>-----------</td>
<td>-------------------</td>
<td>-----------</td>
<td>-------------------</td>
</tr>
<tr>
<td>msexl</td>
<td>application/x-excel</td>
<td>msexl</td>
<td>application/vnd.ms-excel</td>
<td>msmd</td>
<td>application/x-msaccess</td>
</tr>
<tr>
<td>msppt</td>
<td>application/mspowerpoint</td>
<td>msppt</td>
<td>application/powerpoint</td>
<td>msppt</td>
<td>application/vnd.ms-powerpoint</td>
</tr>
<tr>
<td>msproj</td>
<td>application/vnd.ms-project</td>
<td>msproj</td>
<td>application/x-msproject</td>
<td>msproj</td>
<td>application/x-project</td>
</tr>
<tr>
<td>mswri</td>
<td>application/mswrite</td>
<td>pcx</td>
<td>image/x-pcx</td>
<td>pdb</td>
<td>application/x-pilot-pdb</td>
</tr>
<tr>
<td>pdf</td>
<td>application/pdf</td>
<td>pdf</td>
<td>application/x-pdf</td>
<td>pfb</td>
<td>application/x-font</td>
</tr>
<tr>
<td>pict</td>
<td>image/pict</td>
<td>pict</td>
<td>image/x-pict</td>
<td>picture</td>
<td>image/</td>
</tr>
<tr>
<td>png</td>
<td>image/png</td>
<td>ppm</td>
<td>image/x-portable-pixmap</td>
<td>ps</td>
<td>application/postscript</td>
</tr>
<tr>
<td>psd</td>
<td>application/octet-stream</td>
<td>qtm</td>
<td>video/quicktime</td>
<td>ra</td>
<td>audio/vnd.rn-realaudio</td>
</tr>
<tr>
<td>ra</td>
<td>audio/x-pn-realaudio</td>
<td>ra</td>
<td>audio/x-realaudio</td>
<td>rar</td>
<td>application/rar</td>
</tr>
<tr>
<td>ras</td>
<td>image/x-cmu-raster</td>
<td>ras</td>
<td>image/cmu-raster</td>
<td>risc</td>
<td>application/octet-stream</td>
</tr>
</tbody>
</table>
Appendix B: Mapping File Types to MIME Content-types

<table>
<thead>
<tr>
<th>File type</th>
<th>MIME content-type</th>
<th>File type</th>
<th>MIME content-type</th>
<th>File type</th>
<th>MIME content-type</th>
</tr>
</thead>
<tbody>
<tr>
<td>rmf</td>
<td>application/vnd.rn-real-media, g_audiovideo</td>
<td>rtf</td>
<td>application/rtf</td>
<td>rtf</td>
<td>application/x-rtf</td>
</tr>
<tr>
<td>rtf</td>
<td>text/richtext</td>
<td>scm</td>
<td>application/vnd.lotus-screencam</td>
<td>scm</td>
<td>application/x-lotusscreencam</td>
</tr>
<tr>
<td>scm</td>
<td>application/x-screen-cam</td>
<td>scm</td>
<td>video/x-scm</td>
<td>sf</td>
<td>audio/x-sf</td>
</tr>
<tr>
<td>swf</td>
<td>application/x-shockwave-flash</td>
<td>tar</td>
<td>application/x-tar</td>
<td>tga</td>
<td>image/tga</td>
</tr>
<tr>
<td>tiff</td>
<td>image/tiff</td>
<td>tnef</td>
<td>application/ms-tnef</td>
<td>tnef</td>
<td>application/vnd.mstnef</td>
</tr>
<tr>
<td>txt</td>
<td>text/plain</td>
<td>uuencode</td>
<td>text/x-uuencode</td>
<td>zip</td>
<td>application/zip</td>
</tr>
<tr>
<td>voc</td>
<td>audio/voc</td>
<td>voc</td>
<td>audio/x-voc</td>
<td>wav</td>
<td>audio/wav</td>
</tr>
<tr>
<td>wbc</td>
<td>application/x-webshots</td>
<td>wmf</td>
<td>application/x-msmetafile</td>
<td>wmf</td>
<td>image/x-wmf</td>
</tr>
</tbody>
</table>
IWSA Architecture

The basis of the InterScan Web Security Appliance architecture is Hybrid Scan. This architectural element establishes four processes, each having 1000 threads. Hybrid Scan is the combination of the multi-process and multi-thread architectures. The multi-thread architecture allows more connections to be established while multi-process reduces the risk of losing all connections due to a dead process.

IWSA includes several required and optional modules, depending upon the functions used. The following summarizes the main modules and services.

Main Components

The following are the main InterScan Web Security Appliance modules:

- **Main Program**: Installs the Web console and the basic library files necessary for IWSA.
- **HTTP Scanning**: Installs the services necessary for HTTP scanning (either ICAP or HTTP scanning) and URL blocking.
• **FTP Scanning**: Installs the service that enables FTP scanning.
• **URL Filtering**: Installs the service necessary for URL filtering.
• **Applets and ActiveX Scanning**: Installs the service necessary for checking Java applet and ActiveX object digital signatures, and instrumenting applets so their execution can be monitored for prohibited operations.
• **SNMP Notifications**: Installs the service to send SNMP traps to SNMP-compliant network management software.
• **Control Manager Agent for InterScan Web Security Appliance**: Installs the files necessary for the Control Manager agent to enable monitoring and configuration through Control Manager.

Main Services

To start or stop any of the services in this section, you must be logged into the appliance as `remoteadmin/root` using either a serial terminal or SSH. The administrator can only stop or start the HTTP and FTP services from within IWSA (see *Enabling the HTTP Traffic Flow* on page 32 and *Enabling FTP Traffic and FTP Scanning* on page 170). No other services can be stopped or started from within IWSA.

The following services are used by IWSA:

• **Trend Micro InterScan Web Security Appliance Console (java)**: This service is the Web server hosting the Web console.
• **Trend Micro InterScan Web Security Appliance for FTP (isftpd)**: This service enables the FTP traffic flow and FTP virus scanning.
• **Trend Micro InterScan Web Security Appliance for HTTP (iwssd)**: This service enables the HTTP traffic flow and HTTP scanning (including FTP over HTTP). It also handles Applets and ActiveX security processing.

Note: FTP over HTTP is not supported in network bridge mode.

• **Trend Micro IWSA Log Import (logtodb)**: This service writes logs from text files to the database.
Appendix C: Architecture and Configuration Files

- **Trend Micro IWSA Notification Delivery Service (isdelvd):** This service handles administrator notifications (via email) and user notifications (via browser).

- **Trend Micro SNMP Service (svmonitor if using the Linux SNMP agent, snmpmonitor if using the IWSA-installed SNMP agent):** This service sends SNMP trap notifications to SNMP-capable network monitoring devices.

- **Trend Micro Control Manager Service (En_Main):** This service permits IWSA configuration and status reporting through Trend Micro Control Manager, if you are using Control Manager.

- **Trend Micro InterScan Web Security Appliance for Dashboard (ismetricmgmt):** This service collects system resource data to be used in the display of real-time dashboard metrics.

Scheduled Tasks

When installing IWSA, the setup program creates several scheduled tasks.

- **purgefile:** Runs daily at 2:00 am to delete old text log files, subject to the configured time interval to retain logs.

- **schedulereport:** Runs hourly to check if a scheduled report is configured to run.

- **schedulepr_update:** Runs daily to check if it is time to update the product registration/license.

- **schedule_au:** Runs every 15 minutes to check if it is time to update the pattern file or other program components.

- **cleanfile:** Runs hourly, to remove temporary files downloaded for scan-behind or large file scanning.

- **DbOldDataCleanup.sh:** Runs daily at 2:05 am to clean up old reporting log data in the database and cleans up the old access quota counters in the database.

- **svc_snmpmonitor.sh:** Runs every 5 minutes to verify that the logtodb, mail, postgres and metric daemons are running. It will restart them if they are not.

- **db_reindex.sh:** Runs daily at 28 minutes past every other hour to rebuild corrupted database indices containing any invalid data. This maintains optimum database performance.
• **db_vacuum.sh**: Runs daily at 3:58 am to perform garbage collection to free up unused space from database tables in order to maintain optimum database performance.

About Configuration Files

To access configuration files, you must be logged into the appliance as `remoteadmin/root` using either a serial terminal or SSH.

There are three types of configuration files: main, protocol module, and scanning module. All the configuration files are in the `{IWSS root}` directory; the default location for `{IWSS root}` is `/etc/iscan/`. The main configuration file is in `intscan.ini`.

- Settings specific to virus scanning are in:
 `{IWSS root}/IWSSPIScanVsapi.dsc`

- Settings that are specific to the ICAP protocol are in:
 `{IWSS root}/IWSSPIProtocolIcap.pni`

- Settings that are specific to the stand-alone proxy are in:
 `{IWSS root}/IWSSPIProtocolHttpProxy.pni`

- Settings for URL filtering scanning module are in:
 `{IWSS root}/IWSSPIUrlFilter.dsc`

- Settings specific to reporting are in:
 `{IWSS root}/report.ini`

- Settings for the URL Categorization database are in:
 `{IWSS root}/urlfxIFX.ini`

- Settings for default URL categories and their mapping information are in:
 `{IWSS root}/urlfcMapping.ini`

- Settings for the list of IP address and IP ranges of all machines allowed to access the IWSA device are in:
 `{IWSS root}/ClientACL_http.ini` (for HTTP)
Appendix C: Architecture and Configuration Files

Settings for rules that define what ports IWSA will forward HTTP requests to are in:

- {IWSS root}/HttpPortPermission_http.ini (for HTTP)
- {IWSS root}/HttpPortPermission_ftp.ini (for FTP)

Settings for rules that define what ports IWSA will allow HTTPS tunneling to are in:

- {IWSS root}/HttpsConectACL_http.ini

Settings for list of IP address and IP ranges of trusted servers are in:

- {IWSS root}/ServerIPWhiteList_http.ini (for HTTP)
- {IWSS root}/ServerIPWhiteList_ftp.ini (for FTP)

The IWSA Web console varies depending on which modules are installed. If you have been using a previous version of IWSA, there are also many new features available in IWSA that require new .ini file entries.

Protocol Handlers

Functions responsible for interpreting and processing messages in some recognized transmission protocols are encapsulated in a dynamic library referred to as a protocol handler. IWSA provides a choice of either an ICAP protocol handler, which enables IWSA to act as an ICAP server, or an HTTP proxy handler, wherein IWSA acts like a direct HTTP proxy server. (The HTTP protocol handler is also used in bridge mode.) The application binary is independent of the protocol handler, allowing the same application to support different protocols with a configuration change.

Provide the complete path of the active configuration file of the protocol in the main/protocol_config_path entry in the intscan.ini file application.

Protocol handlers require their own specific configuration files, which contain entries that pertain only to that protocol. These protocol configuration files are denoted with a .pni filename extension.
Scanning Modules

Traffic scanning functionality is provided through dynamic libraries known as scanning modules. The first scanning module available to IWSA provides content scanning using the scan engine.

Each scanning module has a configuration file with a .dsc extension. The IWSA application locates the available scanning modules by searching for .dsc files in the directory that is provided in the scan/plugin_dir entry in the intscan.ini file.
OpenLDAP Reference

Though OpenLDAP supports Kerberos authentication, the packages to enable Kerberos authentication support are not installed by default. This appendix covers how to install and configure Kerberos support for OpenLDAP. In addition, this appendix explains how to set up your OpenLDAP directory so IWSA can query it when using the user/group authentication method.

This chapter includes the following topics:

• Software packages tested to enable Kerberos authentication when using IWSA with OpenLDAP
• Modifying OpenLDAP configuration files
• Sample user and group entries in LDIF format
OpenLDAP Server Side Configuration

Software Package Dependencies

The following software packages are compatible with IWSA 3.1:

- cyrus-sasl-2.1.19
- db-4.2.52.NC
- heimdal-0.6.2
- openldap-2.2.17
- openssl-0.9.7d

Configuration Files

Using OpenLDAP with IWSA requires modifying the following configuration files:

/etc/openldap/ldap.conf
/etc/openldap/slapd.conf

Sample ldap.conf

System-wide ldap configuration files. See ldap.conf(5) for
details
This file should be world readable but not world writable.

OpenLDAP supports the ldap.conf file. You could use this file to
specify a number of defaults for OpenLDAP clients. Normally this
file can be found under /etc/openldap based on /etc/init.d/ldap
start script's setting
Set host IP address or fully qualified domain name
HOST example.peter.com
#HOST 10.2.1.1
Set the default BASE DN where LDAP search will start off
BASE dc=peter,dc=com
Set the default URI
URI ldap://example.peter.com

SASL options
specify the sasl mechanism to use. This is a user-only option.
SASL_MECH <mechanism>
specify the realm. This is a user-only option
SASL_REALM <realm>
specify the authentication identity.
SASL_AUTHCID <authcid>

Sample slapd.conf
#
See slapd.conf(5) for details on configuration options.
This file should NOT be world readable.
#
Enforce all changes to follow the defined schemas loaded via
include statements in the conf file

NOTE 1
All the OpenLDAP config files and backend databases are accessed
and created by “ldap”, so if you touch these config files by
“root”, “a Permission Denied” error will occur. Please modify
ownership accordingly.

NOTE 2
krb5-kdc.schema fails to work with current OpenLDAP 2.2.x distro
krb5ValidStart, krb5ValidEnd, krb5PasswordEnd need to have
"EQUALITY generalizedTimeMatch" inserted before the ORDERING
statement.
www.openldap.org/lists/openldap-bugs/200309/msg00029.html

Enforce all changes to follow the defined schemas loaded via
include statements in the conf file

tmp
schemacheck on
Included schemas
include /usr/local/etc/openldap/schema/core.schema
include /usr/local/etc/openldap/schema/krb5-kdc.schema
include /usr/local/etc/openldap/schema/cosine.schema
include /usr/local/etc/openldap/schema/inetorgperson.schema
include /usr/local/etc/openldap/schema/nis.schema
include /usr/local/etc/openldap/schema/java.schema
Do not enable referrals since IWSA 2.5 has its own implementation
referral ldap://root.openldap.org

Directives say where to write out slapd's PID and arguments
started with

pidfile /usr/local/var/run/slapd.pid
argsfile /usr/local/var/run/slapd.args

Load dynamic backend modules:
modulepath /usr/local/libexec/openldap
moduleload back_bdb.la
moduleload backldap.la
moduleload backldbm.la
moduleload back_passwd.la
moduleload back_shell.la

Sample security restrictions
Require integrity protection (prevent hijacking)
Require 112-bit (3DES or better) encryption for updates
Require 63-bit encryption for simple bind
security ssf=1 update_ssf=112 simple_bind=64

Sample access control policy:
Root DSE: allow anyone to read it
Subschema (sub)entry DSE: allow anyone to read it
Other DSEs:
Allow self write access
Allow authenticated users read access
Allow anonymous users to authenticate
Directives needed to implement policy:
access to dn.base="" by * read
access to dn.base="cn=Subschema" by * read
access to *
by self write
by users read
by anonymous auth
#
if no access controls are present, the default policy
allows anyone and everyone to read anything but restricts
updates to rootdn. (e.g., "access to * by * read")
#
rootdn can always read and write EVERYTHING!

access to dn.base="" by * read
access to dn.base="cn=Subschema" by * read
access to *
 by self write
 by users read
 by anonymous auth
 by * none

We have found this gives a useful amount of information about
directory

loglevel 256

Specify the number of threads used in slapd, default = 16
Increasing or decreasing the number of threads used can
drastically affect performance, we found 20 threads to be optimal
for our setup, but it can be different under other operating
systems

threads 20

Tell slapd to close connections that have been idle for 30 seconds
or more

idletimeout 30

Enable LDAPv2 support. This option is disabled by default.

allow bind_v2

Disable anonymous bind

disallow bind_anon

Comment this section to enable simple bind

disallow bind_simple

NOTE 3

SASL Configuration

Caution: make sure you use the canonical name of the machine
in sasl-host. Otherwise, OpenLDAP wont be able to offer GSSAPI
authentication

Set the SASL realm and canonical name of the host

sasl_host example.peter.com
sasl_realm PETER.COM

Allow proxy authentication if it's configured

sasl-authz-policy both
NOTE 4
Mapping of SASL authentication identities to LDAP entries
The sasl-regexp line are particularly critical. They are what
rewrite incoming connections who have SASL formatted DNs to the
DNs that are in the directory DB. It's important to remember that
they are processed in order, so you want to write them from most
specific to most general

NOTE 5
We set the cn=* since we are going to adopt different security
mechanisms. If Kerberos v5 is the only one used, change wildcard
to cn=GSSAPI,cn=auth

sasl-regexp uid=(.*),cn=GSSAPI,cn=auth
uid=$1,ou=people,dc=peter,dc=com

sasl-regexp uid=(.*),cn=.*,cn=auth uid=$1,ou=people,dc=peter,dc=com

ldbm database definitions

NOTE 6
Correctly configuring the backend Berkeley DB is very critical
follow the guideline at
http://www.openldap.org/faq/data/cache/1073.html

Cleartext passwords, especially for the rootdn, should
be avoided. See slappasswd(8) and slapd.conf(5) for details.
Use of strong authentication encouraged.

database bdb

These options specify a DN and passwd that can be used to
authenticate as the super-user entry of the database. The DN and
password specified here will always work, regardless of whether
the entry named actually exists or has the password given.
This solves the chicken-and-egg problem of how to authenticate and
add entries before any entries yet exist

suffix "dc=peter,dc=com"
rootdn "cn=admin,dc=peter,dc=com"
rootpw admin

NOTE 7
The database directory MUST exist prior to running slapd AND
should only be accessible by the slapd/tools. Mode 700
recommended.

directory /usr/local/var/openldap-data
Tell the slapd to store the 10000 most accessed entries in memory
Having a properly configured cache size can drastically affect
performance

```
cachesize 10000
```

Indices to maintain
Some versions of OpenLDAP don't support the index of uniqueMember
"pres" indexing allows you to see a filter that asks if the
attribute is present in an entry
"eq" indexing allows to ask if an attribute has an exact value
"approx" indexing allows to ask if an attribute value sounds like
something
This option is tied to --enable-phonetic compile option in
OpenLDAP
"sub" indexing allows to do substring search on an attribute's
values

```
index default eq,pres
index objectclass eq,pres
index cn,sn,givenname,mail eq,pres,approx,sub
index uid eq,pres
index uidNumber,gidNumber,memberUid eq,pres
```

Tools

- Create the server database and associate indices by importing an existing LDIF file

NAME

slapadd - Add entries to a SLAPD database

SYNOPSIS

```
[-f slapd.conf] [-l ldif-file]
```

DESCRIPTION

Slapadd is used to add entries specified in LDAP Directory Interchange Format (LDIF) to a slapd database.

- Dump the server database to an LDIF file. This can be useful when you want to
 make human-readable backup of current database.
slapcat - SLAPD database to LDIF utility

SYNOPSIS

DESCRIPTION
slapcat is used to generate an LDAP Directory Interchange Format (LDIF) output based upon the contents of a slapd database.
• Rebuilds all indices based upon the current database contents

NAME
slapindex - SLAPD index to LDIF utility

SYNOPSIS

DESCRIPTION
Slapindex is used to regenerate slapd indices based upon the current contents of a database.
• Check the settings of slapd.conf

NAME
Slaptest – Check the suitability of the slapd conf file

SYNOPSIS
/usr/sbin/slaptest [-v] [-d level] [-f slapd.conf]

DESCRIPTION
Slaptest is used to check the conformance of the slapd.conf configuration file. It opens the slapd.conf configuration file, and parses it according to the general and the backend-specific rules, checking its conformance.
• LDAP query utility

NAME
ldapsearch - LDAP search tool
SYNOPSIS

DESCRIPTION

ldapsearch opens a connection to an LDAP server, binds, and performs a search using specified parameters.

EXAMPLE

The command performs a query using simple plain text authentication for a matched entry with “uid=petery” and requests the mail attribute for a matched entry to be returned by the LDAP server.

ldapsearch -x -D "cn=admin,dc=peter,dc=com" -w admin -b "dc=peter,dc=com" -s sub "uid=petery" mail

For further information, consult the manual page.

Verify SASL/OpenLDAP/Kerberos v5 Authentication

1. KRB5_CONFIG="/etc/heimdal/krb5.conf" ./ldapsearch -v -x -D "cn=admin,dc=peter,dc=com" -W "" -b "" -s base -LLL -H ldap://example.peter.com/ supportedSASLMechanisms
2. KRB5_CONFIG="/etc/heimdal/krb5.conf" ./ldapsearch -b "dc=peter,dc=com" -H ldap://example.peter.com/
3. KRB5_CONFIG="/etc/heimdal/krb5.conf" ./ldapwhoami -H ldap://example.peter.com
Customized Attribute Equivalence Table Configuration

If you configure IWSA to use the OpenLDAP or Sun Java System Directory Server 5.2 (formerly Sun™ ONE Directory Server) directories, there are several user group associations that can be configured.

FIGURE 88. OpenLDAP attribute mapping configuration screen

The “Corporate group” field tells IWSA the object class to use as part of the LDAP search filter when searching for LDAP group objects. The “Corporate user” indicates the object class to use as part of the search filter for user objects. Since LDAP cannot distinguish whether an entry is group or user-specific, IWSA needs this “tag” to perform the query.

The **Corporate memberOf** field defines the group membership of an entry, a user or a group while the “Corporate member” field specifies the members in a group entry since a user is the finest entity and cannot contain any member. An attribute name is
the first column in this equivalence table and it specifies the attribute that contains relevant information. Default attributes are “ou” and “ uniquemember” in the standard OpenLDAP schema.

Attribute syntax is the second column in the equivalence table and it defines the attribute that IWSA needs to associate and look up to locate the group or member entry in the LDAP server. IWSA provides three options to configure this setting, namely {“Common Name (CN)”, “Distinguished Name (DN), “Customized Attribute”}.

Consider the following simple LDIF file as an example, keeping in mind the following:

- LDIF is a method for representing data in an LDAP directory in a human readable format.
- To simplify the example, some entries have been removed.
- To dump a LDIF file of an OpenLDAP server, execute slapcat, usually under the OpenLDAP installation path or /usr/local/sbin.

```
slapcat -l [output_file_name]
```
LDIF Format Sample Entries

The following are simplified example of a user and group entry in LDIF format:

1. **User Entry**

   ```
   dn: uid=petery,ou=People,dc=client,dc=us,dc=trendnet,dc=org
   givenName: Peter
   telephoneNumber: +1 408 555 5555
   sn: Peter
   ou: All of IWSA Developer Team
   ou: People #Corporate User field
   mail: petery@peter.com
   objectClass: top
   objectClass: person
   objectClass: organizationalPerson
   objectClass: inetOrgPerson
   uid: petery
   cn: Peter Yen
   ``

   **FIGURE 89. Sample user entry in LDIF format**

2. **Group Entry**

   ```
 dn: cn=All of IWSA Developer Team,ou=Groups,dc=client,dc=us,dc=trendnet,dc=org
 ou: Groups #Corporate Group field
 ou: Engineering
 description: All of IWSA Developer Team
 objectClass: top
 objectClass: groupOfUniqueNames
 uniqueMember:uid=petery,ou=People,dc=client,dc=us,dc=trendnet,dc=org
 cn: All of IWSA Developer Team
 ``

 FIGURE 90. Sample group entry in LDIF format

Note of the following:

- Associate the “Corporate Member” between a group and user entry using “Distinguished Name (DN)” as the attribute syntax.
- Associate the “Corporate MemberOf” in a group and user entry using “Common Name (CN)” as the attribute syntax.
Sample Configuration

Consider the following LDAP attribute mapping:

![OpenLDAP attribute mapping configuration screen](image)

Figure 91. OpenLDAP attribute mapping configuration screen
Take note the of the following:

1. Associate the “Corporate Member” between a group and user entry using “Distinguished Name (DN)” as the attribute syntax.

2. Associate the “Corporate MemberOf” in a group and user entry using “Common Name (CN)” as the attribute syntax.
Deploying IWSA to a VLAN Environment

You can install IWSA on a network that contains Ethernet devices such as switches, routers, and hubs. Deploy the device between a switch or a router that leads to the public network and an edge switch that protects segment(s) of the Local Area Network (LAN). You can also install the device between an edge switch and a hub.

Consider the following when planning to deploy IWSA to a VLAN environment:

• All traffic to and from a network segment has to go through the device. To protect an organization from network threats, position the device in key places of your network. The device should be able to scan all network traffic to prevent, detect, or contain threats.

• Each of the interfaces supports the following port speed and duplex mode settings:
 • Auto
 • 10Mbps x half-duplex
 • 10Mbps x full-duplex
 • 100Mbps x half-duplex
 • 100Mbps x full-duplex
 • 1000Mbps x full-duplex
Note: Both the connected L2/L3 and IWSA devices should have the same interface speed setting and duplex mode. Otherwise, the half-duplex mode setting will take effect. To help guarantee the correct interface speed setting and duplex mode implementation, modify both the L2/L3 and IWSA devices to have the same setting. Apply 1000Mbps x full-duplex for both the switch and IWSA device.

- In a VLAN environment, IWSA should be configured to recognize all the VLANs (VLAN IDs) of traffic passing through it and the corresponding network segments of the VLANs. Otherwise, traffic with the VLAN ID unknown to IWSA will be dropped. IWSA does not support a hybrid environment with “native VLAN with tag” and “native VLAN without tag” traffic.
- IWSA should be able to reach the protected clients only via the internal port, and it should be able to reach the Web or FTP servers only via the external port. For example, if there is a router sitting on the network segment that can only be reached via the external port, an administrator should not set up any static route that routes IWSA’s traffic via the router to any protected network segment reached via the internal port.
- If the traffic passing through IWSA consists of some mutually non-routable network segments, in order to protect every network segment, the setting of the fully transparent mode has to be enabled.
- Conduct a pilot deployment on a test segment of your network.
Scenario 1: Single VLAN Segment

In the above environment, since there is only one VLAN segment traffic passing through IWSA, the only task is to assign IWSA a management IP bound to the VLAN (VLAN 3), which can be done through the preconfiguration utility ([Main Menu] > [1] System Configuration > [2] Configure Device Settings > [2] Change Device Network Settings).
Scenario 2: VLAN Segment with L3 Devices

In this deployment scenario, IWSA is sitting in the VLAN segment 192.168.0.0/24 and is protecting clients in the network segment 10.0.0.0/8.

Since IWSA is on the VLAN segment 192.168.0.0/24, assign IWSA a management IP bound to VLAN 2. For IWSA to pass traffic (through the internal port) to the router (192.168.0.201) and then to the protected clients, a static route (to 10.0.0.0/8 via 192.168.0.201 via VLAN 2) should be set. Similarly, for IWSA to pass traffic (through the external part) to the Web server via the L3 switch (192.168.0.254), a static route (to 172.17.0.0/16 via 192.168.0.254 via VLAN 2) should be set. You can set the static routes using the static route page of the Web console.
Scenario 3: Two Mutually Non-routable VLAN Segments

In this deployment scenario, IWSA protects the clients in two VLAN segments 10.0.0.0/8 (VLAN 3) and 192.168.0.0/24 (VLAN 2), both of which are mutually non-routable.
Since IWSA is on both VLAN 2 and VLAN 3 segments, you can choose to assign IWSA a management IP bound to either VLAN 2 or VLAN 3. In the scenario, IWSA was assigned a management IP bound to VLAN 2 and assigned 192.168.0.201 to the default gateway because this can be done once through the preconfiguration utility and Web Server 1 in the network segment 172.17.0.0/16 is reachable. To scan traffic passing through VLAN 3, IWSA should recognize the network segment of VLAN 3. You can configure this on the bridge ID page of the Web console. Because VLAN 2 and VLAN 3 are mutually non-routable, IWSA should be in fully transparent mode.

Conduct a pilot deployment on a test environment before deploying IWSA to the production environment. If not, the device will block traffic on VLAN 2 and VLAN 3 until all the above settings are applied.
Appendix F

Rack Mounting Instructions

The IWSA device comes with a rack mounting kit for installation on a standard network rack. This appendix describes how to install the IWSA device using the including rack mounting kit. Install the device:

- In a standard 19-inch four-post rack cabinet—The IWSA device requires 1 rack unit (RU) of vertical space in the rack.

Tip: If you are mounting more than one IWSA device, mount the first device in the lowest available position in the rack.

- On any stable surface as a freestanding device. For freestanding installation, be sure to allow at least two inches clearance on each side for ventilation.

Recommended Tools

Trend Micro recommends using the following tools to mount a IWSA device:

- #2 Phillips screwdriver (or equivalent)
- Masking tape or felt-tip pen for marking the mounting holes where you will mount the device Rack Kit
The following table specifies each item.

<table>
<thead>
<tr>
<th>Quantity</th>
<th>ITEM</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 sets (1 slide and 1 rail pair per each set)</td>
<td>Slide and rail sets</td>
<td>Secure the device (fixed mount) or use to secure and allow the device to slide in and out of a four-post rack sliding mount. Note: The rail is assembled with the slide for shipping. Remove the rail from the slide before mounting a device.</td>
</tr>
<tr>
<td>4 pieces (2 pieces per pair)</td>
<td>Slide brackets</td>
<td>Hold the device on both sides of the panel of a four-post rack cabinet.</td>
</tr>
<tr>
<td>1 pair</td>
<td>Rack ears</td>
<td>Secure the device in a fixed mount (when paired with sun screws) or use to serve as the handle when pulling the device out of or sliding it into a four-post rack for a sliding mount.</td>
</tr>
</tbody>
</table>
Appendix F: Rack Mounting Instructions

The following figure illustrates the positions of the slide set, rail.

<table>
<thead>
<tr>
<th>Quantity</th>
<th>ITEM</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 pair</td>
<td>Sun screws</td>
<td>Secure the device in a fixed mount.</td>
</tr>
<tr>
<td>10 pieces</td>
<td>Cage nuts</td>
<td>Hold the slide brackets and secure the device in both the front and back rack slots.</td>
</tr>
<tr>
<td>8 pieces</td>
<td>Case screws</td>
<td></td>
</tr>
<tr>
<td>14 pieces</td>
<td>Slide set screws</td>
<td>Secure the slide and bracket pair.</td>
</tr>
<tr>
<td>14 pieces</td>
<td>Rail screws</td>
<td>Secure the rails on the both side panels of the device (one per side panel).</td>
</tr>
</tbody>
</table>

FIGURE 98. Positions of the slide set, rail, and cage screws
Four-post Rack Mounting

You can mount an IWSA device in a 19" standard cabinet rack.

There are two types of mount setup:

• Sliding mount– Allows you to slide the device in and out of the rack cabinet
• Fixed mount– Anchors the device in one position

Note: Ensure that the rack cabinet’s side panel is longer than 25 inches (635 mm).

To mount IWSA in a four-post rack cabinet:

WARNING! Do not install rack kit components designed for another system. Use only the rack kit for your IWSA device. Using the rack kit for another system may damage the device and cause injury to yourself and others.

1. Prepare the IWSA device.
2. Assemble the slide sets.
3. Install the slide sets.
4. Mount the IWSA device in the rack.

Preparing the IWSA Device

This task involves preparation of the IWSA device.

To prepare the IWSA device:

1. Attach the rack ear and sun screw set to each side on the front-end of the device.

![Attaching the rack ear with sun screw to the device](image)
2. Holding a rail and slide set horizontally, with the slide’s back facing you, detach the rail from the slide by pulling the rail lock to the right.

![FIGURE 100. Detaching the rail from the slide]

Tip: To verify that the rail is properly detached, check the slide latch. If the rail is detached properly, the slide latch should be released.

![FIGURE 101. Rail is properly detached when the latch is raised]

3. Attach a rail to the device side panel by using a minimum of four (4) slide screws.

![FIGURE 102. Attaching a rail to the side panel using slide screws]
4. Repeat step 3 for the other side panel.

FIGURE 103. Completed rack ear and rail preparation

Assembling the Slide Sets

This task involves preparation of two slide sets – one for each side panel. The following items compose a slide set:

- 1 slide
- 2 brackets, for each end
- 4 slide screws (2 slide screws per bracket)

To assemble a slide set:

1. Prepare one end of the slide set.

 FIGURE 104. A slide set is composed of two brackets and a slide
2. Assemble the bracket and slide pair for the back vertical rail by locating the screw holes and aligning their positions.

FIGURE 105. A slide set installed in a four-post rack

FIGURE 106. Screw positions for the back vertical rail
3. Insert the slide screws, as shown below.

![Screw access](image1)

FIGURE 107. Inserting two slide screws (bracket and slide pair for the back vertical rail)

4. Follow the instructions in step 1 to assemble the bracket and slide pair for the front vertical rail.

![Screw access](image2)

FIGURE 108. Inserting two slide screws (bracket and slide pair for the front vertical rail)
Slide set tip for the front vertical rail, slide set tip for the back vertical rail, and view of the back.

FIGURE 109. Completed slide set
Installing the Slide Sets

This task involves installation of the assembled slide sets to a four-post rack.

To install the slide sets:

1. Remove the rack doors if the rack doors are still covering the rack slots where you want to mount the IWSA device.

 Tip: Refer to documentation provided with the rack cabinet for details on how to remove the rack doors.

2. Using masking tape or felt-tip pen, place a mark on the rack’s front vertical rails where you want to position the bottom of the IWSA device.

 FIGURE 110. Graphical representation of the device position in the rack and slide set guides (rack markings)

3. Place a mark 1.70in (4.32cm) above the original mark you made (or count up two holes) and mark the rack’s front vertical rails to indicate placement of the IWSA device’s upper edge on the vertical rails.

 Tip: A IWSA device occupies 1 RU (1.70in or 4.32cm, three rack holes) of vertical space in the rack.
4. Install one pair of cage nuts to occupy holes in between the marks you made on the front vertical rail.

![Image of cage nuts for a sliding mount](image1)

Figure 111. Cage nuts for a sliding mount

Note: Install a third cage nut above the cage nut pair for a fixed mount.

![Image of cage nuts for a fixed mount](image2)

Figure 112. Cage nuts for a fixed mount
5. Starting with the front vertical rail, hold and position the slide set tip to align with the holes of the cage nuts.

6. Install two cage screws over the slide set and cage nuts’ top and bottom holes to secure the slide set to the front vertical rail.

![FIGURE 113. Installing the cage screws in the top and bottom holes of the slide set (front vertical rail view)](image)

7. At the back of the cabinet, pull back the slide set until the mounting holes align with their respective cage nut holes on the back vertical rail.

8. Repeat steps 2 to 7 for the remaining slide set on the other side of the rack.

9. Guarantee that the slide sets are installed at the same position on the vertical rails on each side of the rack.

![FIGURE 114. Mounted slide sets](image)
Mounting the IWSA Device in the Rack

To mount the IWSA device in the rack:

1. Pull the slides out until the release latches are fully extended and locked.
2. Lift the device into position in front of the extended slides.
3. Holding the top and bottom panels, align and fit the side panel rails.
4. Push the device into the rack until the front and back end slide set screws engage.

5. Install the sun screws to prevent the device from sliding in or out.
BMC Logs

The BMC logs are located on the IWSA device. The following BMC logs are available:

- *Temperature Logs* on page 308
- *Voltage Logs* on page 310
- *Processor Temperature Logs* on page 313
- *CPU VRD Logs* on page 313
- *Vcore Logs* on page 313
- *System Fan Logs* on page 314
- *Platform Security Violation Attempt Logs* on page 317
- *System Power and AC Power State Logs* on page 317
- *Memory Logs* on page 317
- *POST Error Logs* on page 317
- *Event Recording Logs* on page 319
- *Various Logs* on page 319
Temperature Logs

<table>
<thead>
<tr>
<th>BMC Event Log</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU 1 Temp Upper Critical - going high Assert</td>
<td>CPU 1 and CPU 2 – the temperature reading relating to the first and second processor</td>
</tr>
<tr>
<td>CPU 1 Temp Upper Non-critical - going high Assert</td>
<td>DIMM – the temperature reading relating to dual in-line memory module</td>
</tr>
<tr>
<td>CPU 1 Temp Upper Critical - going low Deassert</td>
<td>VRD 1 and VRD 2 – the temperature reading relating to onboard processors</td>
</tr>
<tr>
<td>CPU 1 Temp Upper Non-critical - going low Deassert</td>
<td>Ambient temperature – the temperature reading relating to all sides of the device</td>
</tr>
<tr>
<td>CPU 2 Temp Upper Critical - going high Assert</td>
<td>Lower Critical – the lower critical temperature threshold (cold)</td>
</tr>
<tr>
<td>CPU 2 Temp Upper Non-critical - going high Assert</td>
<td>Upper Critical – the upper critical temperature threshold (hot)</td>
</tr>
<tr>
<td>CPU 2 Temp Upper Critical - going low Deassert</td>
<td>going low Assert – the temperature has started to decrease</td>
</tr>
<tr>
<td>CPU 2 Temp Upper Non-critical - going low Deassert</td>
<td>going high Assert – the temperature has started to increase</td>
</tr>
<tr>
<td>DIMM Temp Upper Critical - going high Assert</td>
<td></td>
</tr>
<tr>
<td>DIMM Temp Upper Non-critical - going high Assert</td>
<td></td>
</tr>
<tr>
<td>VRD 1 Temp Upper Critical - going high Assert</td>
<td></td>
</tr>
<tr>
<td>VRD 1 Temp Upper Non-critical - going high Assert</td>
<td></td>
</tr>
<tr>
<td>VRD 1 Temp Upper Critical - going low Deassert</td>
<td></td>
</tr>
<tr>
<td>VRD 1 Temp Upper Non-critical - going low Deassert</td>
<td></td>
</tr>
<tr>
<td>VRD 2 Temp Upper Critical - going high Assert</td>
<td></td>
</tr>
<tr>
<td>VRD 2 Temp Upper Non-critical - going high Assert</td>
<td></td>
</tr>
<tr>
<td>VRD 2 Temp Upper Critical - going low Deassert</td>
<td></td>
</tr>
<tr>
<td>VRD 2 Temp Upper Non-critical - going low Deassert</td>
<td></td>
</tr>
<tr>
<td>Ambient Temp Upper Critical - going high Assert</td>
<td></td>
</tr>
</tbody>
</table>
Appendix G: BMC Logs

<table>
<thead>
<tr>
<th>BMC Event Log</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambient Temp Upper Non-critical - going high Assert</td>
<td></td>
</tr>
<tr>
<td>Ambient Temp Upper Critical - going low Deassert</td>
<td></td>
</tr>
<tr>
<td>Ambient Temp Upper Non-critical - going low Deassert</td>
<td></td>
</tr>
</tbody>
</table>
Voltage Logs

<table>
<thead>
<tr>
<th>BMC Event Log</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lan AB 1.5V STB Lower Critical - going</td>
<td>Lan AB – ports 1 and 2</td>
</tr>
<tr>
<td>low Assert</td>
<td></td>
</tr>
<tr>
<td>Lan AB 1.5V STB Upper Critical - going</td>
<td>Lan CD – ports 3 and 4</td>
</tr>
<tr>
<td>high Assert</td>
<td></td>
</tr>
<tr>
<td>Lan AB 1.5V STB Lower Non-critical -</td>
<td>LAN E – port 5</td>
</tr>
<tr>
<td>going low Assert</td>
<td></td>
</tr>
<tr>
<td>Lan AB 1.5V STB Upper Non-critical -</td>
<td>CPU1 – processor 1</td>
</tr>
<tr>
<td>going high Assert</td>
<td></td>
</tr>
<tr>
<td>Lan AB 1.5V STB Upper Critical - going</td>
<td>CPU2 – processor 2</td>
</tr>
<tr>
<td>low Deassert</td>
<td>#V STB – refers to the voltage input</td>
</tr>
<tr>
<td>Lan AB 1.5V STB Lower Non-critical -</td>
<td>Lower Critical – the lower critical voltage</td>
</tr>
<tr>
<td>going high Deassert</td>
<td>threshold</td>
</tr>
<tr>
<td>Lan CD 1.5V STB Lower Critical - going</td>
<td>Upper Critical – the upper critical voltage</td>
</tr>
<tr>
<td>low Assert</td>
<td>threshold</td>
</tr>
<tr>
<td>Lan CD 1.5V STB Upper Critical - going</td>
<td>going low Assert – the voltage has started to</td>
</tr>
<tr>
<td>low Deassert</td>
<td>decrease</td>
</tr>
<tr>
<td>Lan CD 1.5V STB Lower Non-critical -</td>
<td>going high Assert – the voltage has started to</td>
</tr>
<tr>
<td>going low Deassert</td>
<td>increase</td>
</tr>
<tr>
<td>Lan CD 1.5V STB Upper Non-critical -</td>
<td>going high Deassert – the voltage has started to</td>
</tr>
<tr>
<td>going high Deassert</td>
<td>stop from increasing</td>
</tr>
<tr>
<td>Lan E 1.5V STB Lower Critical - going</td>
<td>going low Deassert – the voltage has started to</td>
</tr>
<tr>
<td>low Assert</td>
<td>stop from decreasing</td>
</tr>
<tr>
<td>Lan E 1.5V STB Upper Critical - going</td>
<td></td>
</tr>
<tr>
<td>high Assert</td>
<td></td>
</tr>
<tr>
<td>Lan E 1.5V STB Lower Non-critical -</td>
<td></td>
</tr>
<tr>
<td>going low Deassert</td>
<td></td>
</tr>
<tr>
<td>Lan E 1.5V STB Upper Non-critical -</td>
<td></td>
</tr>
<tr>
<td>going high Deassert</td>
<td></td>
</tr>
<tr>
<td>Lan E 1.5V STB Upper Critical - going</td>
<td></td>
</tr>
<tr>
<td>low Deassert</td>
<td></td>
</tr>
<tr>
<td>CPU1 12V Lower Critical - going low</td>
<td></td>
</tr>
<tr>
<td>Assert</td>
<td></td>
</tr>
<tr>
<td>CPU1 12V Upper Critical - going high</td>
<td></td>
</tr>
<tr>
<td>Assert</td>
<td></td>
</tr>
<tr>
<td>CPU1 12V Lower Non-critical - going</td>
<td></td>
</tr>
<tr>
<td>high Deassert</td>
<td></td>
</tr>
<tr>
<td>CPU1 12V Upper Non-critical - going</td>
<td></td>
</tr>
<tr>
<td>high Deassert</td>
<td></td>
</tr>
<tr>
<td>CPU1 12V Upper Critical - going low</td>
<td></td>
</tr>
<tr>
<td>Deassert</td>
<td></td>
</tr>
<tr>
<td>CPU1 12V Upper Critical - going low</td>
<td></td>
</tr>
<tr>
<td>Deassert</td>
<td></td>
</tr>
<tr>
<td>BMC Event Log</td>
<td>Description</td>
</tr>
<tr>
<td>--</td>
<td>-------------</td>
</tr>
<tr>
<td>CPU2 12V Lower Critical - going low Assert</td>
<td></td>
</tr>
<tr>
<td>CPU2 12V Upper Critical - going high Assert</td>
<td></td>
</tr>
<tr>
<td>CPU2 12V Lower Non-critical - going low Assert</td>
<td></td>
</tr>
<tr>
<td>CPU2 12V Upper Non-critical - going high Assert</td>
<td></td>
</tr>
<tr>
<td>CPU2 12V Lower Non-critical - going high Deassert</td>
<td></td>
</tr>
<tr>
<td>CPU2 12V Upper Non-critical - going low Deassert</td>
<td></td>
</tr>
<tr>
<td>CPU2 12V Upper Critical - going low Deassert</td>
<td></td>
</tr>
<tr>
<td>Vcc 3.3V Lower Critical - going low Assert</td>
<td></td>
</tr>
<tr>
<td>Vcc 3.3V Upper Critical - going high Assert</td>
<td></td>
</tr>
<tr>
<td>Vcc 3.3V Lower Non-critical - going low Assert</td>
<td></td>
</tr>
<tr>
<td>Vcc 3.3V Upper Non-critical - going high Assert</td>
<td></td>
</tr>
<tr>
<td>Vcc 3.3V Lower Non-critical - going high Deassert</td>
<td></td>
</tr>
<tr>
<td>Vcc 3.3V Lower Critical - going high Deassert</td>
<td></td>
</tr>
<tr>
<td>Vcc 3.3V Upper Non-critical - going low Deassert</td>
<td></td>
</tr>
<tr>
<td>Vcc 3.3V Upper Critical - going low Deassert</td>
<td></td>
</tr>
<tr>
<td>Vcc 5V Lower Critical - going low Assert</td>
<td></td>
</tr>
<tr>
<td>Vcc 5V Upper Critical - going high Assert</td>
<td></td>
</tr>
<tr>
<td>Vcc 5V Lower Non-critical - going low Assert</td>
<td></td>
</tr>
<tr>
<td>Vcc 5V Upper Non-critical - going high Assert</td>
<td></td>
</tr>
<tr>
<td>Vcc 5V Lower Non-critical - going high Deassert</td>
<td></td>
</tr>
<tr>
<td>Vcc 5V Lower Critical - going high Deassert</td>
<td></td>
</tr>
<tr>
<td>Vcc 5V Upper Non-critical - going low Deassert</td>
<td></td>
</tr>
<tr>
<td>Vcc 5V Upper Critical - going low Deassert</td>
<td></td>
</tr>
<tr>
<td>Vcc 12V Lower Critical - going low Assert</td>
<td></td>
</tr>
<tr>
<td>Vcc 12V Upper Critical - going high Assert</td>
<td></td>
</tr>
<tr>
<td>Vcc 12V Lower Non-critical - going low Assert</td>
<td></td>
</tr>
<tr>
<td>Vcc 12V Upper Non-critical - going high Assert</td>
<td></td>
</tr>
<tr>
<td>Vcc 12V Lower Non-critical - going high Deassert</td>
<td></td>
</tr>
<tr>
<td>Vcc 12V Lower Critical - going high Deassert</td>
<td></td>
</tr>
<tr>
<td>Vcc 12V Upper Non-critical - going low Deassert</td>
<td></td>
</tr>
<tr>
<td>Vcc 12V Upper Critical - going low Deassert</td>
<td></td>
</tr>
<tr>
<td>Vcc 1.5V Lower Critical - going low Assert</td>
<td></td>
</tr>
<tr>
<td>Vcc 1.5V Upper Critical - going high Assert</td>
<td></td>
</tr>
<tr>
<td>Vcc 1.5V Lower Non-critical - going low Assert</td>
<td></td>
</tr>
<tr>
<td>Vcc 1.5V Upper Non-critical - going high Assert</td>
<td></td>
</tr>
<tr>
<td>BMC Event Log</td>
<td>Description</td>
</tr>
<tr>
<td>---</td>
<td>-------------</td>
</tr>
<tr>
<td>Vcc 1.5V Lower Non-critical - going high Deassert</td>
<td></td>
</tr>
<tr>
<td>Vcc 1.5V Lower Critical - going high Deassert</td>
<td></td>
</tr>
<tr>
<td>Vcc 1.5V Upper Non-critical - going low Deassert</td>
<td></td>
</tr>
<tr>
<td>Vcc 1.5V Upper Critical - going low Deassert</td>
<td></td>
</tr>
<tr>
<td>DDR 1.8V Lower Critical - going low Assert</td>
<td></td>
</tr>
<tr>
<td>DDR 1.8V Upper Critical - going high Assert</td>
<td></td>
</tr>
<tr>
<td>DDR 1.8V Lower Non-critical - going low Assert</td>
<td></td>
</tr>
<tr>
<td>DDR 1.8V Upper Non-critical - going high Assert</td>
<td></td>
</tr>
<tr>
<td>DDR 1.8V Lower Non-critical - going high Deassert</td>
<td></td>
</tr>
<tr>
<td>DDR 1.8V Upper Non-critical - going low Deassert</td>
<td></td>
</tr>
<tr>
<td>DDR 1.8V Upper Non-critical - going low Deassert</td>
<td></td>
</tr>
<tr>
<td>DDR 1.8V Upper Critical - going low Deassert</td>
<td></td>
</tr>
<tr>
<td>Vtt GTL 1.2V Lower Critical - going low Assert</td>
<td></td>
</tr>
<tr>
<td>Vtt GTL 1.2V Lower Non-critical - going low Assert</td>
<td></td>
</tr>
<tr>
<td>Vtt GTL 1.2V Lower Critical - going high Assert</td>
<td></td>
</tr>
<tr>
<td>Vtt GTL 1.2V Upper Non-critical - going high Assert</td>
<td></td>
</tr>
<tr>
<td>Vtt GTL 1.2V Upper Critical - going high Assert</td>
<td></td>
</tr>
<tr>
<td>Vtt GTL 1.2V Lower Non-critical - going high Deassert</td>
<td></td>
</tr>
<tr>
<td>Vtt GTL 1.2V Upper Non-critical - going low Deassert</td>
<td></td>
</tr>
<tr>
<td>Vtt GTL 1.2V Upper Critical - going low Deassert</td>
<td></td>
</tr>
<tr>
<td>Vcc -12V Lower Critical - going low Assert</td>
<td></td>
</tr>
<tr>
<td>Vcc -12V Lower Non-critical - going low Assert</td>
<td></td>
</tr>
<tr>
<td>Vcc -12V Upper Critical - going high Assert</td>
<td></td>
</tr>
<tr>
<td>Vcc -12V Upper Non-critical - going high Assert</td>
<td></td>
</tr>
<tr>
<td>Vcc -12V Lower Non-critical - going high Deassert</td>
<td></td>
</tr>
<tr>
<td>Vcc -12V Lower Critical - going high Deassert</td>
<td></td>
</tr>
<tr>
<td>Vcc -12V Upper Non-critical - going low Deassert</td>
<td></td>
</tr>
<tr>
<td>Vcc -12V Upper Critical - going low Deassert</td>
<td></td>
</tr>
<tr>
<td>Vcc -12V Upper Non-critical - going high Assert</td>
<td></td>
</tr>
<tr>
<td>Vcc -12V Upper Critical - going low Deassert</td>
<td></td>
</tr>
<tr>
<td>Vcc 3.3V STB Lower Critical - going low Assert</td>
<td></td>
</tr>
<tr>
<td>Vcc 3.3V STB Lower Non-critical - going low Assert</td>
<td></td>
</tr>
<tr>
<td>Vcc 3.3V STB Upper Critical - going high Assert</td>
<td></td>
</tr>
<tr>
<td>Vcc 3.3V STB Upper Non-critical - going high Assert</td>
<td></td>
</tr>
<tr>
<td>Vcc 3.3V STB Lower Non-critical - going high Deassert</td>
<td></td>
</tr>
<tr>
<td>Vcc 3.3V STB Lower Critical - going high Deassert</td>
<td></td>
</tr>
<tr>
<td>Vcc 3.3V STB Upper Non-critical - going low Deassert</td>
<td></td>
</tr>
<tr>
<td>Vcc 3.3V STB Upper Critical - going low Deassert</td>
<td></td>
</tr>
</tbody>
</table>
Processor Temperature Logs

<table>
<thead>
<tr>
<th>BMC Event Log</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processor 1 Hot Assert</td>
<td>Processor 1 and Processor 2 – refers to the first and second device processor</td>
</tr>
<tr>
<td>Processor 1 Hot Deassert</td>
<td>Hot Assert – the internal CPU temperature is starting to get too hot</td>
</tr>
<tr>
<td>Processor 2 Hot Assert</td>
<td>Deassert – the internal CPU temperature has stopped to get too hot</td>
</tr>
<tr>
<td>Processor 2 Hot Deassert</td>
<td></td>
</tr>
</tbody>
</table>

CPU VRD Logs

<table>
<thead>
<tr>
<th>BMC LOG</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU VRD PWRGD Assert</td>
<td>VRD – Voltage Regulator Down. It provides an adjustment of voltage from the main to the CPU power</td>
</tr>
<tr>
<td>CPU VRD PWRGD Deassert</td>
<td>CPU VRD PWRGD – indicates a working VRD</td>
</tr>
<tr>
<td></td>
<td>Assert – the VRD voltage current status is OK</td>
</tr>
<tr>
<td></td>
<td>Deassert – the VRD voltage current status fails</td>
</tr>
</tbody>
</table>

Vcore Logs

<table>
<thead>
<tr>
<th>BMC LOG</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vcore 1 Assert</td>
<td>Vcore 1 – the core voltage for CPU1</td>
</tr>
<tr>
<td>Vcore 1 Deassert</td>
<td>Vcore 2 – the core voltage for CPU2</td>
</tr>
<tr>
<td>Vcore 2 Assert</td>
<td>Assert – the core voltage current status is OK</td>
</tr>
<tr>
<td>Vcore 2 Deassert</td>
<td>Deassert – the core voltage current status fails</td>
</tr>
</tbody>
</table>
System Fan Logs

<table>
<thead>
<tr>
<th>BMC Log</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Fan 1A not present or stop</td>
<td>System Fan #A/#B – # indicates the system fan number and A/B indicates the system fan location (front or rear position)</td>
</tr>
<tr>
<td>System Fan 1A Lower Critical - going low Assert</td>
<td>Not present or stop – the system fan is either missing or stopped</td>
</tr>
<tr>
<td>System Fan 1A Upper Critical - going high Assert</td>
<td>Lower Critical – the lower critical fan speed threshold</td>
</tr>
<tr>
<td>System Fan 1A Lower Critical - going high Deassert System Fan 1A Upper Critical - going low Deassert</td>
<td>Upper Critical – the upper critical fan speed threshold</td>
</tr>
<tr>
<td>System Fan 1B not present or stop</td>
<td>going low Assert – the fan has started to slow down the speed</td>
</tr>
<tr>
<td>System Fan 1B Lower Critical - going low Assert</td>
<td>going high Assert – the fan has started to increase speed</td>
</tr>
<tr>
<td>System Fan 1B Upper Critical - going high Assert</td>
<td></td>
</tr>
<tr>
<td>System Fan 1B Lower Critical - going high Deassert System Fan 1B Upper Critical - going low Deassert</td>
<td></td>
</tr>
<tr>
<td>System Fan 2A not present or stop</td>
<td></td>
</tr>
<tr>
<td>System Fan 2A Lower Critical - going low Assert</td>
<td></td>
</tr>
<tr>
<td>System Fan 2A Upper Critical - going high Assert</td>
<td></td>
</tr>
<tr>
<td>System Fan 2A Lower Critical - going high Deassert System Fan 2A Upper Critical - going low Deassert</td>
<td></td>
</tr>
<tr>
<td>System Fan 2B not present or stop</td>
<td></td>
</tr>
<tr>
<td>System Fan 2B Lower Critical - going low Assert</td>
<td></td>
</tr>
<tr>
<td>System Fan 2B Upper Critical - going high Assert</td>
<td></td>
</tr>
</tbody>
</table>
BMC LOG DESCRIPTION

<table>
<thead>
<tr>
<th>BMC LOG</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Fan 2B Lower Critical - going high Deassert</td>
<td></td>
</tr>
<tr>
<td>System Fan 2B Upper Critical - going low Deassert</td>
<td></td>
</tr>
<tr>
<td>System Fan 3A not present or stop</td>
<td></td>
</tr>
<tr>
<td>System Fan 3A Lower Critical - going low Assert</td>
<td></td>
</tr>
<tr>
<td>System Fan 3A Upper Critical - going high Assert</td>
<td></td>
</tr>
<tr>
<td>System Fan 3A Lower Critical - going high Deassert</td>
<td></td>
</tr>
<tr>
<td>System Fan 3A Upper Critical - going low Deassert</td>
<td></td>
</tr>
<tr>
<td>System Fan 3B not present or stop</td>
<td></td>
</tr>
<tr>
<td>System Fan 3B Lower Critical - going low Deassert</td>
<td></td>
</tr>
<tr>
<td>System Fan 3B Upper Critical - going high Assert</td>
<td></td>
</tr>
<tr>
<td>System Fan 3B Lower Critical - going high Deassert</td>
<td></td>
</tr>
<tr>
<td>System Fan 3B Upper Critical - going low Deassert</td>
<td></td>
</tr>
<tr>
<td>System Fan 4A not present or stop</td>
<td></td>
</tr>
<tr>
<td>System Fan 4A Lower Critical - going low Deassert</td>
<td></td>
</tr>
<tr>
<td>System Fan 4A Upper Critical - going high Deassert</td>
<td></td>
</tr>
<tr>
<td>System Fan 4A Lower Critical - going high Deassert</td>
<td></td>
</tr>
<tr>
<td>System Fan 4A Upper Critical - going low Deassert</td>
<td></td>
</tr>
<tr>
<td>System Fan 4B not present or stop</td>
<td></td>
</tr>
<tr>
<td>System Fan 4B Lower Critical - going low Deassert</td>
<td></td>
</tr>
<tr>
<td>System Fan 4B Upper Critical - going high Deassert</td>
<td></td>
</tr>
</tbody>
</table>

315
BMC LOG

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Fan 4B Lower Critical - going high</td>
</tr>
<tr>
<td>System Fan 4B Upper Critical - going low</td>
</tr>
<tr>
<td>Deassert</td>
</tr>
<tr>
<td>Deassert</td>
</tr>
<tr>
<td>System Fan 5A not present or stop</td>
</tr>
<tr>
<td>System Fan 5A Lower Critical - going low</td>
</tr>
<tr>
<td>Assert</td>
</tr>
<tr>
<td>System Fan 5A Upper Critical - going high</td>
</tr>
<tr>
<td>Assert</td>
</tr>
<tr>
<td>System Fan 5A Lower Critical - going high</td>
</tr>
<tr>
<td>Deassert</td>
</tr>
<tr>
<td>System Fan 5A Upper Critical - going low</td>
</tr>
<tr>
<td>Deassert</td>
</tr>
<tr>
<td>System Fan 5B not present or stop</td>
</tr>
<tr>
<td>System Fan 5B Lower Critical - going low</td>
</tr>
<tr>
<td>Assert</td>
</tr>
<tr>
<td>System Fan 5B Upper Critical - going high</td>
</tr>
<tr>
<td>Assert</td>
</tr>
<tr>
<td>System Fan 5B Lower Critical - going high</td>
</tr>
<tr>
<td>Deassert</td>
</tr>
<tr>
<td>System Fan 5B Upper Critical - going low</td>
</tr>
<tr>
<td>Deassert</td>
</tr>
</tbody>
</table>
Platform Security Violation Attempt Logs

<table>
<thead>
<tr>
<th>BMC LOG</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auth. Security Front Panel Lockout Violation Assert</td>
<td>The system has detected a security violation.</td>
</tr>
<tr>
<td>Auth. Security Out-of-band password Violation Assert</td>
<td>A remote connection is trying to access and compromise the system with an invalid password.</td>
</tr>
</tbody>
</table>

System Power and AC Power State Logs

<table>
<thead>
<tr>
<th>BMC LOG</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Off/Power Down Assert</td>
<td>Assert– IWSA (InterScan Web Security Appliance) is powered off</td>
</tr>
<tr>
<td>Power Off/Power Down Deassert</td>
<td>Deassert– IWSA (InterScan Web Security Appliance) is powering on</td>
</tr>
<tr>
<td>Power Unit AC lost Assert</td>
<td></td>
</tr>
<tr>
<td>Power Unit AC lost Deassert</td>
<td></td>
</tr>
</tbody>
</table>

Memory Logs

<table>
<thead>
<tr>
<th>BMC LOG</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIMM x Correctable ECC Assert</td>
<td>Memory: single-bit error A single bit error occurred and can be recovered</td>
</tr>
<tr>
<td>DIMM x Uncorrectable ECC Assert</td>
<td>Memory: multi-bit error A multi-bit error occurred and cannot be recoverable</td>
</tr>
<tr>
<td>DIMM Presence detected Deassert</td>
<td>Indicates that the memory module is absent</td>
</tr>
</tbody>
</table>

POST Error Logs

<table>
<thead>
<tr>
<th>BMC LOG</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>POST Error channel 2 timer error Assert</td>
<td>Channel 2 timer error.</td>
</tr>
<tr>
<td>POST Error CMOS battery failure Assert</td>
<td>CMOS battery failure.</td>
</tr>
<tr>
<td>POST Error CMOS system options not set Assert</td>
<td>CMOS system options not set.</td>
</tr>
<tr>
<td>BMC Log</td>
<td>Description</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>POST Error CMOS checksum error Assert</td>
<td>CMOS checksum error.</td>
</tr>
<tr>
<td>POST Error CMOS time not set Assert</td>
<td>CMOS time not set.</td>
</tr>
<tr>
<td>POST Error PCI memory conflict Assert</td>
<td>PCI memory conflict.</td>
</tr>
<tr>
<td>POST Error PCI I/O conflict Assert</td>
<td>PCI I/O conflict.</td>
</tr>
<tr>
<td>POST Error PCI IRQ conflict Assert</td>
<td>PCI IRQ conflict.</td>
</tr>
<tr>
<td>POST Error static resource conflict Assert</td>
<td>Static resource conflict.</td>
</tr>
<tr>
<td>POST Error NVRAM checksum error, NVRAM cleared Assert</td>
<td>NVRAM checksum error, NVRAM cleared.</td>
</tr>
<tr>
<td>POST Error system board device resource conflict Assert</td>
<td>System board device resource conflict.</td>
</tr>
<tr>
<td>POST Error NVRAM data invalid, NVRAM cleared Assert</td>
<td>NVRAM data invalid, NVRAM cleared.</td>
</tr>
<tr>
<td>POST Error Memory read/write test fail Assert</td>
<td>Memory conflict</td>
</tr>
</tbody>
</table>
Event Recording Logs

<table>
<thead>
<tr>
<th>BMC LOG</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eventlog All event logging disable Assert</td>
<td>Event logging disabled.</td>
</tr>
<tr>
<td>Eventlog All event logging disable Deassert</td>
<td>Event logging enabled.</td>
</tr>
</tbody>
</table>

Various Logs

<table>
<thead>
<tr>
<th>BMC LOG</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Critical INT Software NMI Assert</td>
<td>A non-maskable interrupt (NMI) error occurred.</td>
</tr>
<tr>
<td>Critical INT PCI PERR Assert</td>
<td>A parity (PERR) error occurred.</td>
</tr>
<tr>
<td>Critical INT PCI SERR Assert</td>
<td>A system (SERR) error occurred.</td>
</tr>
<tr>
<td>Button Power button pressed Assert</td>
<td>Indicates the Power button activity.</td>
</tr>
<tr>
<td>Button Power button pressed Deassert</td>
<td></td>
</tr>
<tr>
<td>Button Reset button pressed Assert</td>
<td></td>
</tr>
<tr>
<td>Button Reset button pressed Deassert</td>
<td></td>
</tr>
<tr>
<td>Boot Error No bootable media Assert</td>
<td>IWSA (InterScan Web Security Appliance) cannot boot. There is no boot component.</td>
</tr>
<tr>
<td>Watchdog Timer expired, status only Assert</td>
<td>Timer expired– the component for detecting the watchdog timer time-outs</td>
</tr>
<tr>
<td>Watchdog Hard Reset Assert</td>
<td></td>
</tr>
<tr>
<td>Watchdog Power Down Assert</td>
<td>Basic Input/Output System (BIOS)/Power-On Self Test (POST), OS, Server Management Software (SMS/OS) timeout</td>
</tr>
<tr>
<td>Watchdog Power Cycle Assert</td>
<td></td>
</tr>
<tr>
<td>Watchdog Timer expired, status only Assert</td>
<td>Hard Reset Assert– the device will restart</td>
</tr>
<tr>
<td>Watchdog Hard Reset Assert</td>
<td></td>
</tr>
<tr>
<td>Watchdog Power Down Assert</td>
<td>Power Down Assert– the device will turn off</td>
</tr>
<tr>
<td>Watchdog Power Cycle Assert</td>
<td></td>
</tr>
<tr>
<td>Watchdog Timer expired, status only Assert</td>
<td>Power Cycle Assert– the device will power off and then power on after a short time delay</td>
</tr>
<tr>
<td>Watchdog Hard Reset Assert</td>
<td></td>
</tr>
<tr>
<td>Watchdog Power Down Assert</td>
<td></td>
</tr>
<tr>
<td>Watchdog Power Cycle Assert</td>
<td></td>
</tr>
<tr>
<td>BMC LOG</td>
<td>DESCRIPTION</td>
</tr>
<tr>
<td>------------------------</td>
<td>--</td>
</tr>
<tr>
<td>System Panic Assert</td>
<td>Indicates a system kernel panic.</td>
</tr>
<tr>
<td>HDD Smart Failure Assert</td>
<td>Indicates hard disk drive SMART feature failure.</td>
</tr>
</tbody>
</table>
Glossary of Terms

This glossary describes special terms as used in this document or the online help.

<table>
<thead>
<tr>
<th>Term</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>100BaseT</td>
<td>An alternate term for “fast Ethernet,” an upgraded standard for connecting computers into a local area network (LAN). 100BaseT Ethernet can transfer data at a peak rate of 100 Mbps. It is also more expensive and less common than 10BaseT. Also see 10BaseT.</td>
</tr>
<tr>
<td>10BaseT</td>
<td>The most common form of Ethernet is called 10BaseT, which denotes a peak transmission speed of 10 Mbps using copper twisted-pair cable. Ethernet is a standard for connecting computers into a local area network (LAN). The maximum cable distance is 100 meters (325 feet), the maximum devices per segment is 1, and the maximum devices per network are 1024. Also see 100BaseT.</td>
</tr>
<tr>
<td>access (verb)</td>
<td>To read data from or write data to a storage device, such as a computer or server.</td>
</tr>
<tr>
<td>access (noun)</td>
<td>Authorization to read or write data. Most operating systems allow you to define different levels of access, depending on job responsibilities.</td>
</tr>
<tr>
<td>Term</td>
<td>Explanation</td>
</tr>
<tr>
<td>---------------------------</td>
<td>---</td>
</tr>
<tr>
<td>action</td>
<td>The operation to be performed when:</td>
</tr>
</tbody>
</table>
| (Also see target and notification) | - a virus has been detected
- spam has been detected
- a content violation has occurred
- an attempt was made to access a blocked URL, or
- file blocking has been triggered.
Actions typically include clean and deliver, quarantine, delete, or deliver/transfer anyway. Delivering/transfering anyway is not recommended—delivering a virus-infected message or transferring a virus-infected file can compromise your network. |
| activate | To enable your software after completion of the registration process. Trend Micro products will not be operable until product activation is complete. Activate during installation or after installation (in the Web console) on the Product License screen. |
| Activation Code | A 37-character code, including hyphens, that is used to activate Trend Micro products. Here is an example of an Activation Code: SM-9UE7-HG5B3-8577B-TD5P4-Q2XT5-48PG4
Also see Registration Key. |
| active FTP | Configuration of FTP protocol that allows the client to initiate “handshaking” signals for the command session, but the host initiates the data session. |
| ActiveUpdate | ActiveUpdate is a function common to many Trend Micro products. Connected to the Trend Micro update Web site, ActiveUpdate provides up-to-date downloads of virus pattern files, scan engines, and program files via the Internet or the Trend Micro Total Solution CD. |
| ActiveX | A type of open software architecture that implements object linking and embedding, enabling some of the standard interfaces, such as downloading of Web pages. |
| ActiveX malicious code | An ActiveX control is a component object embedded in a Web page which runs automatically when the page is viewed.
ActiveX controls allow Web developers to create interactive, dynamic Web pages with broad functionality such as HouseCall, Trend Micro's free online scanner.
Hackers, virus writers, and others who want to cause mischief or worse may use ActiveX malicious code as a vehicle to attack the system. In many cases, the Web browser can be configured so that these ActiveX controls do not execute by changing the browser's security settings to “high.” |
<table>
<thead>
<tr>
<th>Term</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>ActiveUpdate</td>
<td>A Trend Micro utility that enables on-demand or background updates to the virus pattern file and scan engine, as well as the anti-spam rules database and anti-spam engine.</td>
</tr>
<tr>
<td>address</td>
<td>Refers to a networking address (see IP address) or an email address, which is the string of characters that specify the source or destination of an email message.</td>
</tr>
<tr>
<td>administrator</td>
<td>Refers to “system administrator”—the person in an organization who is responsible for activities such as setting up new hardware and software, allocating user names and passwords, monitoring disk space and other IT resources, performing backups, and managing network security.</td>
</tr>
<tr>
<td>administrator account</td>
<td>A user name and password that has administrator-level privileges.</td>
</tr>
<tr>
<td>administrator email address</td>
<td>The address used by the administrator of your Trend Micro product to manage notifications and alerts.</td>
</tr>
<tr>
<td>adware</td>
<td>Advertising-supported software in which advertising banners appear while the program is running. Adware that installs a “back door”; tracking mechanism on the user’s computer without the user’s knowledge is called “spyware.”</td>
</tr>
<tr>
<td>alert</td>
<td>A message intended to inform a system’s users or administrators about a change in the operating conditions of that system or about some kind of error condition.</td>
</tr>
<tr>
<td>anti-relay</td>
<td>Mechanisms to prevent hosts from “piggybacking” through another host’s network.</td>
</tr>
<tr>
<td>antivirus</td>
<td>Computer programs designed to detect and clean computer viruses.</td>
</tr>
<tr>
<td>archive</td>
<td>A single file containing one or (usually) more separate files plus information to allow them to be extracted (separated) by a suitable program, such as a .zip file.</td>
</tr>
<tr>
<td>attachment</td>
<td>A file attached to (sent with) an email message.</td>
</tr>
<tr>
<td>audio/video file</td>
<td>A file containing sounds, such as music, or video footage.</td>
</tr>
<tr>
<td>Term</td>
<td>Explanation</td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
</tr>
<tr>
<td>authentication</td>
<td>The verification of the identity of a person or a process. Authentication ensures that digital data transmissions are delivered to the intended receiver. Authentication also assures the receiver of the integrity of the message and its source (where or whom it came from). The simplest form of authentication requires a user name and password to gain access to a particular account. Authentication protocols can also be based on secret-key encryption, such as the Data Encryption Standard (DES) algorithm, or on public-key systems using digital signatures. Also see public-key encryption and digital signature.</td>
</tr>
<tr>
<td>binary</td>
<td>A number representation consisting of zeros and ones used by practically all computers because of its ease of implementation using digital electronics and Boolean algebra.</td>
</tr>
<tr>
<td>block</td>
<td>To prevent entry into your network.</td>
</tr>
<tr>
<td>bridge</td>
<td>A device that forwards traffic between network segments based on data link layer information. These segments have a common network layer address.</td>
</tr>
<tr>
<td>browser</td>
<td>A program which allows a person to read hypertext, such as Internet Explorer. The browser gives some means of viewing the contents of nodes (or “pages”) and of navigating from one node to another. A browser acts as a client to a remote Web server.</td>
</tr>
<tr>
<td>cache</td>
<td>A small fast memory, holding recently accessed data, designed to speed up subsequent access to the same data. The term is most often applied to processor-memory access, but also applies to a local copy of data accessible over a network etc.</td>
</tr>
<tr>
<td>case-matching</td>
<td>Scanning for text that matches both words and case. For example, if “dog” is added to the content-filter, with case-matching enabled, messages containing “Dog” will pass through the filter; messages containing “dog” will not.</td>
</tr>
<tr>
<td>cause</td>
<td>The reason a protective action, such as URL-blocking or file-blocking, was triggered—this information appears in log files.</td>
</tr>
<tr>
<td>clean</td>
<td>To remove virus code from a file or message.</td>
</tr>
<tr>
<td>Term</td>
<td>Explanation</td>
</tr>
<tr>
<td>----------------------</td>
<td>---</td>
</tr>
<tr>
<td>client</td>
<td>A computer system or process that requests a service of another computer system or process (a "server") using some kind of protocol and accepts the server's responses. A client is part of a client-server software architecture.</td>
</tr>
<tr>
<td>client-server environment</td>
<td>A common form of distributed system in which software is split between server tasks and client tasks. A client sends requests to a server, according to some protocol, asking for information or action, and the server responds.</td>
</tr>
<tr>
<td>compressed file</td>
<td>A single file containing one or more separate files plus information to allow them to be extracted by a suitable program, such as WinZip.</td>
</tr>
<tr>
<td>configuration</td>
<td>Selecting options for how your Trend Micro product will function, for example, selecting whether to quarantine or delete a virus-infected email message.</td>
</tr>
<tr>
<td>content filtering</td>
<td>Scanning email messages for content (words or phrases) prohibited by your organization's Human Resources or IT messaging policies, such as hate mail, profanity, or pornography.</td>
</tr>
<tr>
<td>content violation</td>
<td>An event that has triggered the content filtering policy.</td>
</tr>
<tr>
<td>cookie</td>
<td>A mechanism for storing information about an Internet user, such as name, preferences, and interests, which is stored in your Web browser for later use. The next time you access a Web site for which your browser has a cookie, your browser sends the cookie to the Web server, which the Web server can then use to present you with customized Web pages. For example, you might enter a Web site that welcomes you by name.</td>
</tr>
<tr>
<td>daemon</td>
<td>A program that is not invoked explicitly, but lies dormant waiting for some condition(s) to occur. The perpetrator of the condition need not be aware that a daemon is lurking.</td>
</tr>
<tr>
<td>damage routine</td>
<td>The destructive portion of virus code, also called the payload.</td>
</tr>
<tr>
<td>default</td>
<td>A value that pre-populates a field in the Web console interface. A default value represents a logical choice and is provided for convenience. Use default values as-is, or change them.</td>
</tr>
<tr>
<td>Term</td>
<td>Explanation</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>De-Militarized Zone (DMZ)</td>
<td>From the military term for an area between two opponents where fighting is prevented. DMZ Ethernets connect networks and computers controlled by different bodies. They may be external or internal. External DMZ Ethernets link regional networks with routers.</td>
</tr>
<tr>
<td>dialer</td>
<td>A type of Trojan that when executed, connects the user’s system to a pay-per-call location in which the unsuspecting user is billed for the call without his or her knowledge.</td>
</tr>
<tr>
<td>digital signature</td>
<td>Extra data appended to a message which identifies and authenticates the sender and message data using a technique called public-key encryption. Also see public-key encryption and authentication.</td>
</tr>
<tr>
<td>directory</td>
<td>A node, which is part of the structure in a hierarchical computer file system. A directory typically contains other nodes, folders, or files. For example, C:\Windows is the Windows directory on the C drive.</td>
</tr>
<tr>
<td>directory path</td>
<td>The subsequent layers within a directory where a file can be found, for example, the directory path for the ISVW for SMB Quarantine directory is: C:\Programs\Trend Micro\ISVW\Quarantine</td>
</tr>
<tr>
<td>disclaimer</td>
<td>A statement appended to the beginning or end of an email message, that states certain terms of legality and confidentiality regarding the message. To see an example, click the online help for the SMTP Configuration - Disclaimer screen.</td>
</tr>
<tr>
<td>DNS</td>
<td>Domain Name System—A general-purpose data query service chiefly used on the Internet for translating host names into IP addresses.</td>
</tr>
<tr>
<td>DNS resolution</td>
<td>When a DNS client requests host name and address data from a DNS server, the process is called resolution. Basic DNS configuration results in a server that performs default resolution. For example, a remote server queries another server for data on a machine in the current zone. Client software on the remote server queries the resolver, which answers the request from its database files.</td>
</tr>
<tr>
<td>(administrative) domain</td>
<td>A group of computers sharing a common database and security policy.</td>
</tr>
<tr>
<td>Term</td>
<td>Explanation</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>domain name</td>
<td>The full name of a system, consisting of its local host name and its domain name, for example, tellsitall.com. A domain name should be sufficient to determine a unique Internet address for any host on the Internet. This process, called “name resolution”, uses the Domain Name System (DNS).</td>
</tr>
<tr>
<td>DoS (Denial of Service) attack</td>
<td>Group-addressed email messages with large attachments that clog your network resources to the point where messaging service is noticeably slow or even stopped.</td>
</tr>
<tr>
<td>DOS virus</td>
<td>Also referred to as “COM” and “EXE file infectors.” DOS viruses infect DOS executable programs—files that have the extensions *.COM or *.EXE. Unless they have overwritten or inadvertently destroyed part of the original program’s code, most DOS viruses try to replicate and spread by infecting other host programs.</td>
</tr>
<tr>
<td>download (noun)</td>
<td>Data that has been downloaded, for example, from a Web site via HTTP.</td>
</tr>
<tr>
<td>download (verb)</td>
<td>To transfer data or code from one computer to another. Downloading often refers to transfer from a larger “host” system (especially a server or mainframe) to a smaller “client” system.</td>
</tr>
<tr>
<td>dropper</td>
<td>Droppers are programs that serve as delivery mechanisms to carry and drop viruses, Trojans, or worms into a system.</td>
</tr>
<tr>
<td>ELF</td>
<td>Executable and Linkable Format—An executable file format for Unix and Linux platforms.</td>
</tr>
<tr>
<td>encryption</td>
<td>Encryption is the process of changing data into a form that can be read only by the intended receiver. To decipher the message, the receiver of the encrypted data must have the proper decryption key. In traditional encryption schemes, the sender and the receiver use the same key to encrypt and decrypt data. Public-key encryption schemes use two keys: a public key, which anyone may use, and a corresponding private key, which is possessed only by the person who created it. With this method, anyone may send a message encrypted with the owner’s public key, but only the owner has the private key necessary to decrypt it. PGP (Pretty Good Privacy) and DES (Data Encryption Standard) are two of the most popular public-key encryption schemes.</td>
</tr>
<tr>
<td>Term</td>
<td>Explanation</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---</td>
</tr>
<tr>
<td>End User License Agreement</td>
<td>An End User License Agreement or EULA is a legal contract between a software publisher and the software user. It typically outlines restrictions on the side of the user, who can refuse to enter into the agreement by not clicking “I accept” during installation. Clicking “I do not accept” will, of course, end the installation of the software product. Many users inadvertently agree to the installation of spyware and adware into their computers when they click “I accept” on EULA prompts displayed during the installation of certain free software.</td>
</tr>
<tr>
<td>Ethernet</td>
<td>A local area network (LAN) technology invented at the Xerox Corporation, Palo Alto Research Center. Ethernet is a best-effort delivery system that uses CSMA/CD technology. Ethernet can be run over a variety of cable schemes, including thick coaxial, thin coaxial, twisted pair, and fiber optic cable. Ethernet is a standard for connecting computers into a local area network. The most common form of Ethernet is called 10BaseT, which denotes a peak transmission speed of 10 Mbps using copper twisted-pair cable.</td>
</tr>
<tr>
<td>executable file</td>
<td>A binary file containing a program in machine language which is ready to be executed (run).</td>
</tr>
<tr>
<td>EXE file infector</td>
<td>An executable program with a .exe file extension. Also see DOS virus.</td>
</tr>
<tr>
<td>exploit</td>
<td>An exploit is code that takes advantage of a software vulnerability or security hole. Exploits are able to propagate into and run intricate routines on vulnerable computers.</td>
</tr>
<tr>
<td>false positive</td>
<td>An email message that was “caught” by the spam filter and identified as spam, but is actually not spam.</td>
</tr>
<tr>
<td>FAQ</td>
<td>Frequently Asked Questions—A list of questions and answers about a specific topic.</td>
</tr>
<tr>
<td>file</td>
<td>An element of data, such as an email message or HTTP download.</td>
</tr>
</tbody>
</table>
file-infecting virus | File-infecting viruses infect executable programs (generally, files that have extensions of .com or .exe). Most such viruses simply try to replicate and spread by infecting other host programs, but some inadvertently destroy the program they infect by overwriting a portion of the original code. A minority of these viruses are very destructive and attempt to format the hard drive at a pre-determined time or perform some other malicious action. In many cases, a file-infecting virus can be successfully removed from the infected file. However, if the virus has overwritten part of the program's code, the original file will be unrecoverable.

file type | The kind of data stored in a file. Most operating systems use the file name extension to determine the file type. The file type is used to choose an appropriate icon to represent the file in a user interface, and the correct application with which to view, edit, run, or print the file.

file name extension | The portion of a file name (such as .dll or .xml) which indicates the kind of data stored in the file. Apart from informing the user what type of content the file holds, file name extensions are typically used to decide which program to launch when a file is run.

filtering, dynamic | IP service that can be used within VPN tunnels. Filters are one way GateLock controls traffic from one network to another. When TCP/IP sends data packets to the firewall, the filtering function in the firewall looks at the header information in the packets and directs them accordingly. The filters operate on criteria such as IP source or destination address range, TCP ports, UDP, Internet Control Message Protocol (ICMP), or TCP responses. Also see tunneling and Virtual Private Network (VPN).

firewall | A gateway machine with special security precautions on it, used to service outside network (especially Internet) connections and dial-in lines.

FTP | A client-server protocol which allows a user on one computer to transfer files to and from another computer over a TCP/IP network. Also refers to the client program the user executes to transfer files.

gateway | An interface between an information source and a Web server.
<table>
<thead>
<tr>
<th>Term</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>grayware</td>
<td>A category of software that may be legitimate, unwanted, or malicious. Unlike threats such as viruses, worms, and Trojans, grayware does not infect, replicate, or destroy data, but it may violate your privacy. Examples of grayware include spyware, adware, and remote access tools.</td>
</tr>
<tr>
<td>group file type</td>
<td>Types of files that have a common theme, for example:</td>
</tr>
<tr>
<td></td>
<td>- Audio/Video</td>
</tr>
<tr>
<td></td>
<td>- Compressed</td>
</tr>
<tr>
<td></td>
<td>- Executable</td>
</tr>
<tr>
<td></td>
<td>- Images</td>
</tr>
<tr>
<td></td>
<td>- Java</td>
</tr>
<tr>
<td></td>
<td>- Microsoft Office</td>
</tr>
<tr>
<td>GUI</td>
<td>Graphical User Interface—The use of pictures rather than just words to represent the input and output of a program. This contrasts with a command line interface where communication is by exchange of strings of text.</td>
</tr>
<tr>
<td>hacking tool</td>
<td>Tools such as hardware and software that enables penetration testing of a computer system or network for the purpose of finding security vulnerabilities that can be exploited.</td>
</tr>
<tr>
<td>hard disk (or hard drive)</td>
<td>One or more rigid magnetic disks rotating about a central axle with associated read/write heads and electronics, used to read and write hard disks or floppy disks, and to store data. Most hard disks are permanently connected to the drive (fixed disks) though there are also removable disks.</td>
</tr>
<tr>
<td>header (networking definition)</td>
<td>Part of a data packet that contains transparent information about the file or the transmission.</td>
</tr>
<tr>
<td>heuristic rule-based scanning</td>
<td>Scanning network traffic, using a logical analysis of properties that reduces or limits the search for solutions.</td>
</tr>
<tr>
<td>HTTPS</td>
<td>Hypertext Transfer Protocol Secure—A variant of HTTP used for handling secure transactions.</td>
</tr>
<tr>
<td>host</td>
<td>A computer connected to a network.</td>
</tr>
<tr>
<td>Term</td>
<td>Explanation</td>
</tr>
<tr>
<td>--------------------</td>
<td>---</td>
</tr>
<tr>
<td>hub</td>
<td>This hardware is used to network computers together (usually over an Ethernet connection). It serves as a common wiring point so that information can flow through one central location to any other computer on the network thus enabling centralized management. A hub is a hardware device that repeats signals at the physical Ethernet layer. A hub retains the behavior of a standard bus type network (such as Thinnet), but produces a star topology with the hub at the center of the star. This configuration enables centralized management.</td>
</tr>
<tr>
<td>ICSA</td>
<td>ICSA Labs is an independent division of TruSecure Corporation. For over a decade, ICSA has been the security industry’s central authority for research, intelligence, and certification testing of products. ICSA Labs sets standards for information security products and certifies over 90% of the installed base of antivirus, firewall, IPSec, cryptography, and PC firewall products in the world today.</td>
</tr>
<tr>
<td>image file</td>
<td>A file containing data representing a two-dimensional scene, in other words, a picture. Images are taken from the real world, for example, via a digital camera, or they may be generated by computer using graphics software.</td>
</tr>
<tr>
<td>incoming</td>
<td>Email messages or other data routed into your network.</td>
</tr>
<tr>
<td>installation script</td>
<td>The installation screens used to install Unix versions of Trend Micro products.</td>
</tr>
<tr>
<td>integrity checking</td>
<td>See checksumming.</td>
</tr>
<tr>
<td>IntelliScan</td>
<td>IntelliScan is a Trend Micro scanning technology that optimizes performance by examining file headers using true-file type recognition, and scanning only file types known to potentially harbor malicious code. True-file type recognition helps identify malicious code that can be disguised by a harmless extension name.</td>
</tr>
<tr>
<td>Internet</td>
<td>A client-server hypertext information retrieval system, based on a series of networks connected with routers. The Internet is a modern information system and a widely accepted medium for advertising, online sales, and services, as well as university and many other research networks. The World Wide Web is the most familiar aspect of the Internet.</td>
</tr>
<tr>
<td>Internet Protocol (IP)</td>
<td>An Internet standard protocol that defines a basic unit of data called a datagram. A datagram is used in a connectionless, best-effort, delivery system. The Internet protocol defines how information gets passed between systems across the Internet.</td>
</tr>
<tr>
<td>Term</td>
<td>Explanation</td>
</tr>
<tr>
<td>-----------------------</td>
<td>---</td>
</tr>
<tr>
<td>interrupt</td>
<td>An asynchronous event that suspends normal processing and temporarily diverts the flow of control through an "interrupt handler" routine.</td>
</tr>
<tr>
<td>in the wild</td>
<td>Describes known viruses that are actively circulating. Also see "in the zoo."</td>
</tr>
<tr>
<td>in the zoo</td>
<td>Describes known viruses that are currently controlled by antivirus products. Also see "in the wild."</td>
</tr>
<tr>
<td>intranet</td>
<td>Any network which provides similar services within an organization to those provided by the Internet outside it, but which is not necessarily connected to the Internet.</td>
</tr>
<tr>
<td>IP</td>
<td>Internet Protocol—See IP address.</td>
</tr>
<tr>
<td>IP address</td>
<td>Internet address for a device on a network, typically expressed using dot notation such as 123.123.123.123.</td>
</tr>
<tr>
<td>IP gateway</td>
<td>Also called a router, a gateway is a program or a special-purpose device that transfers IP datagrams from one network to another until the final destination is reached.</td>
</tr>
<tr>
<td>IT</td>
<td>Information technology, to include hardware, software, networking, telecommunications, and user support.</td>
</tr>
<tr>
<td>Java applets</td>
<td>Java applets are small, portable Java programs embedded in HTML pages that can run automatically when the pages are viewed. Java applets allow Web developers to create interactive, dynamic Web pages with broader functionality. Authors of malicious code have used Java applets as a vehicle for attack. Most Web browsers, however, can be configured so that these applets do not execute - sometimes by simply changing browser security settings to "high."</td>
</tr>
<tr>
<td>Java file</td>
<td>Java is a general-purpose programming language developed by Sun Microsystems. A Java file contains Java code. Java supports programming for the Internet in the form of platform-independent Java "applets." (An applet is a program written in Java programming language that can be included in an HTML page. When you use a Java-technology enabled browser to view a page that contains an applet, the applet's code is transferred to your system and is executed by the browser’s Java Virtual Machine.)</td>
</tr>
<tr>
<td>Java malicious code</td>
<td>Virus code written or embedded in Java. Also see Java file.</td>
</tr>
</tbody>
</table>
Glossary of Terms

<table>
<thead>
<tr>
<th>Term</th>
<th>Explanation</th>
</tr>
</thead>
</table>
| JavaScript virus | JavaScript is a simple programming language developed by Netscape that allows Web developers to add dynamic content to HTML pages displayed in a browser using scripts. Javascript shares some features of Sun Microsystems Java programming language, but was developed independently.
A JavaScript virus is a virus that is targeted at these scripts in the HTML code. This enables the virus to reside in Web pages and download to a user’s desktop through the user’s browser.
Also see VBScript virus. |
<p>| joke program | An executable program that is annoying or causes users undue alarm. Unlike viruses, joke programs do not self-propagate and should simply be removed from your system. |
| KB | Kilobyte—1024 bytes of memory. |
| keylogger | Keyloggers are programs that catch and store all keyboard activity. There are legitimate keylogging programs that are used by corporations to monitor employees and by parents to monitor their children. However, criminals also use keystroke logs to sort for valuable information such as logon credentials and credit card numbers. |
| LAN (Local Area Network) | A data communications network which is geographically limited, allowing easy interconnection of computers within the same building. |
| LDAP (Lightweight Directory Access Protocol) | An internet protocol that email programs use to locate contact information from a server. For example, suppose you want to locate all persons in Boston who have an email address containing the name “Bob.” An LDAP search would enable you to view the email addresses that meet this criteria. |
| license | Authorization by law to use a Trend Micro product. |
| license certificate | A document that proves you are an authorized user of a Trend Micro product. |
| link (also called hyperlink) | A reference from some point in one hypertext document to some point in another document or another place in the same document. Links are usually distinguished by a different color or style of text, such as underlined blue text. When you activate the link, for example, by clicking on it with a mouse, the browser displays the target of the link. |</p>
<table>
<thead>
<tr>
<th>Term</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>listening port</td>
<td>A port utilized for client connection requests for data exchange.</td>
</tr>
<tr>
<td>load balancing</td>
<td>Load balancing is the mapping (or re-mapping) of work to processors, with the intent of improving the efficiency of a concurrent computation.</td>
</tr>
<tr>
<td>local area network (LAN)</td>
<td>Any network technology that interconnects resources within an office environment, usually at high speeds, such as Ethernet. A local area network is a short-distance network used to link a group of computers together within a building. 10BaseT Ethernet is the most commonly used form of LAN. A hardware device called a hub serves as the common wiring point, enabling data to be sent from one machine to another over the network. LANs are typically limited to distances of less than 500 meters and provide low-cost, high-bandwidth networking capabilities within a small geographical area.</td>
</tr>
<tr>
<td>log storage directory</td>
<td>Directory on your server that stores log files.</td>
</tr>
<tr>
<td>logic bomb</td>
<td>Code surreptitiously inserted into an application or operating system that causes it to perform some destructive or security-compromising activity whenever specified conditions are met.</td>
</tr>
<tr>
<td>macro</td>
<td>A command used to automate certain functions within an application.</td>
</tr>
<tr>
<td>MacroTrap</td>
<td>A Trend Micro utility that performs a rule-based examination of all macro code that is saved in association with a document. Macro virus code is typically contained in part of the invisible template that travels with many documents (.dot, for example, in Microsoft Word documents). MacroTrap checks the template for signs of a macro virus by seeking out key instructions that perform virus-like activity—instructions such as copying parts of the template to other templates (replication), or instructions to execute potentially harmful commands (destruction).</td>
</tr>
<tr>
<td>macro virus</td>
<td>Macro viruses are often encoded as an application macro and included in a document. Unlike other virus types, macro viruses aren't specific to an operating system and can spread via email attachments, Web downloads, file transfers, and cooperative applications.</td>
</tr>
<tr>
<td>malware (malicious software)</td>
<td>Programming or files that are developed for the purpose of doing harm, such as viruses, worms, and Trojans.</td>
</tr>
<tr>
<td>Web console</td>
<td>The user interface for your Trend Micro product.</td>
</tr>
<tr>
<td>Term</td>
<td>Explanation</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>mass mailer (also known as a Worm)</td>
<td>A malicious program that has high damage potential, because it causes large amounts of network traffic.</td>
</tr>
<tr>
<td>Mbps</td>
<td>Millions of bits per second—a measure of bandwidth in data communications.</td>
</tr>
<tr>
<td>MB</td>
<td>Megabyte—1024 kilobytes of data.</td>
</tr>
<tr>
<td>Media Access Control (MAC) address</td>
<td>An address that uniquely identifies the network interface card, such as an Ethernet adapter. For Ethernet, the MAC address is a 6 octet address assigned by IEEE. On a LAN or other network, the MAC address is a computer's unique hardware number. (On an Ethernet LAN, it's the same as the Ethernet address.) When you're connected to the Internet from your computer (or host as the Internet protocol thinks of it), a correspondence table relates your IP address to your computer's physical (MAC) address on the LAN. The MAC address is used by the Media Access Control sublayer of the Data-Link Control (DLC) layer of telecommunication protocols. There is a different MAC sublayer for each physical device type.</td>
</tr>
<tr>
<td>Microsoft Office file</td>
<td>Files created with Microsoft Office tools such as Excel or Microsoft Word.</td>
</tr>
<tr>
<td>mixed threat attack</td>
<td>Complex attacks that take advantage of multiple entry points and vulnerabilities in enterprise networks, such as the “Nimda” or “Code Red” threats.</td>
</tr>
<tr>
<td>MTA (Mail Transfer Agent)</td>
<td>The program responsible for delivering email messages. Also see SMTP server.</td>
</tr>
<tr>
<td>Network Address Translation (NAT)</td>
<td>A standard for translating secure IP addresses to temporary, external, registered IP address from the address pool. This allows Trusted networks with privately assigned IP addresses to have access to the Internet. This also means that you don’t have to get a registered IP address for every machine in your network.</td>
</tr>
<tr>
<td>network virus</td>
<td>A type of virus that uses network protocols, such as TCP, FTP, UDP, HTTP, and email protocols to replicate. Network viruses often do not alter system files or modify the boot sectors of hard disks. Instead, they infect the memory of client machines, forcing them to flood the network with traffic, which can cause slowdowns or even complete network failure.</td>
</tr>
<tr>
<td>Term</td>
<td>Explanation</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>notification</td>
<td>A message that is forwarded to one or more of the following: - system administrator - sender of a message - recipient of a message, file download, or file transfer The purpose of the notification is to communicate that a prohibited action has taken place, or was attempted, such as a virus being detected in an attempted HTTP file download.</td>
</tr>
<tr>
<td>offensive content</td>
<td>Words or phrases in messages or attachments that are considered offensive to others, for example, profanity, sexual harassment, racial harassment, or hate mail.</td>
</tr>
<tr>
<td>online help</td>
<td>Documentation that is bundled with the GUI.</td>
</tr>
<tr>
<td>open source</td>
<td>Programming code that is available to the general public for use or modification free of charge and without license restrictions.</td>
</tr>
<tr>
<td>operating system</td>
<td>The software which handles tasks such as the interface to peripheral hardware, scheduling tasks, and allocating storage. In this documentation, the term also refers to the software that presents a window system and graphical user interface.</td>
</tr>
<tr>
<td>outgoing</td>
<td>Email messages or other data leaving your network, routed out to the Internet.</td>
</tr>
<tr>
<td>parameter</td>
<td>A variable, such as a range of values (a number from 1 to 10).</td>
</tr>
<tr>
<td>partition</td>
<td>A logical portion of a disk. (Also see sector, which is a physical portion of a disk.)</td>
</tr>
<tr>
<td>passive FTP</td>
<td>Configuration of FTP protocol that allows clients within your local area network to initiate the file transfer, using random upper port numbers (1024 and above).</td>
</tr>
<tr>
<td>password cracker</td>
<td>An application program that is used to recover a lost or forgotten password. These applications can also be used by an intruder to gain unauthorized access to a computer or network resources.</td>
</tr>
<tr>
<td>pattern file (also known as Official Pattern Release)</td>
<td>The pattern file, as referred to as the Official Pattern Release (OPR), is the latest compilation of patterns for identified viruses. It is guaranteed to have passed a series of critical tests to ensure that you get optimum protection from the latest virus threats. This pattern file is most effective when used with the latest scan engine.</td>
</tr>
<tr>
<td>Term</td>
<td>Explanation</td>
</tr>
<tr>
<td>------------------</td>
<td>--</td>
</tr>
<tr>
<td>payload</td>
<td>Payload refers to an action that a virus performs on the infected computer. This can be something relatively harmless, such as displaying messages or ejecting the CD drive, or something destructive, such as deleting the entire hard drive.</td>
</tr>
<tr>
<td>policies</td>
<td>Policies provide the initial protection mechanism for the firewall, allowing you to determine what traffic passes across it based on IP session details. They protect the Trusted network from outsider attacks, such as the scanning of Trusted servers. Policies create an environment in which you set up security policies to monitor traffic attempting to cross your firewall.</td>
</tr>
<tr>
<td>port</td>
<td>A logical channel or channel endpoint in a communications system, used to distinguish between different logical channels on the same network interface on the same computer. Each application program has a unique port number associated with it.</td>
</tr>
<tr>
<td>protected network</td>
<td>A network protected by IWSA (InterScan Web Security Appliance).</td>
</tr>
<tr>
<td>proxy</td>
<td>A process providing a cache of items available on other servers which are presumably slower or more expensive to access.</td>
</tr>
<tr>
<td>proxy server</td>
<td>A World Wide Web server which accepts URLs with a special prefix, used to fetch documents from either a local cache or a remote server, then returns the URL to the requester.</td>
</tr>
<tr>
<td>public-key encryption</td>
<td>An encryption scheme where each person gets a pair of “keys,” called the public key and the private key. Each person’s public key is published while the private key is kept secret. Messages are encrypted using the intended recipient’s public key and can only be decrypted using his or her private key. Also see authentication and digital signature.</td>
</tr>
<tr>
<td>purge</td>
<td>To delete all, as in getting rid of old entries in the logs.</td>
</tr>
<tr>
<td>quarantine</td>
<td>To place infected data such as email messages, infected attachments, infected HTTP downloads, or infected FTP files in an isolated directory (the Quarantine Directory) on your server.</td>
</tr>
<tr>
<td>queue</td>
<td>A data structure used to sequence multiple demands for a resource when mail is being received faster than it can be processed. Messages are added at the end of the queue, and are taken from the beginning of the queue, using a FIFO (first-in, first-out) approach.</td>
</tr>
<tr>
<td>Term</td>
<td>Explanation</td>
</tr>
<tr>
<td>----------------------</td>
<td>---</td>
</tr>
<tr>
<td>recipient</td>
<td>The person or entity to whom an email message is addressed.</td>
</tr>
<tr>
<td>registration</td>
<td>The process of identifying yourself as a Trend Micro customer, using a product Registration Key, on the Trend Micro Online Registration screen.</td>
</tr>
<tr>
<td></td>
<td>https://olr.trendmicro.com/registration</td>
</tr>
<tr>
<td>Registration Key</td>
<td>A 22-character code, including hyphens, that is used to register in the Trend Micro customer database. Here is an example of a Registration Key:</td>
</tr>
<tr>
<td></td>
<td>SM-27RT-UY4Z-39HB-MNW8 Also see Activation Code</td>
</tr>
<tr>
<td>relay</td>
<td>To convey by means of passing through various other points.</td>
</tr>
<tr>
<td>remote access tool (RAT)</td>
<td>Hardware and software that allow a legitimate system administrator to manage a network remotely. However, these same tools can also be used by intruders to attempt a breach of your system security.</td>
</tr>
<tr>
<td>removable drive</td>
<td>A removable hardware component or peripheral device of a computer, such as a zip drive.</td>
</tr>
<tr>
<td>replicate</td>
<td>To self-reproduce. As used in this documentation, the term refers to viruses or worms that can self-reproduce.</td>
</tr>
<tr>
<td>router</td>
<td>This hardware device routes data from a local area network (LAN) to a phone line's long distance line. Routers also act as traffic cops, allowing only authorized machines to transmit data into the local network so that private information can remain secure. In addition to supporting these dial-in and leased connections, routers also handle errors, keep network usage statistics, and handle security issues.</td>
</tr>
<tr>
<td>scan</td>
<td>To examine items in a file in sequence to find those that meet a particular criteria.</td>
</tr>
<tr>
<td>scan engine</td>
<td>The module that performs antivirus scanning and detection in the host product to which it is integrated.</td>
</tr>
<tr>
<td>script</td>
<td>A set of programming commands that, once invoked, can be executed together. Other terms used synonymously with “script” are “macro” or “batch file.”</td>
</tr>
<tr>
<td>sector</td>
<td>A physical portion of a disk. (Also see partition, which is a logical portion of a disk.)</td>
</tr>
<tr>
<td>Term</td>
<td>Explanation</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--</td>
</tr>
<tr>
<td>seat</td>
<td>A license for one person to use a Trend Micro product.</td>
</tr>
<tr>
<td>Secure Socket Layer (SSL)</td>
<td>Secure Socket Layer (SSL), is a protocol designed by Netscape for providing data security layered between application protocols (such as HTTP, Telnet, or FTP) and TCP/IP. This security protocol provides data encryption, server authentication, message integrity, and optional client authentication for a TCP/IP connection.</td>
</tr>
<tr>
<td>server</td>
<td>A program which provides some service to other (client) programs. The connection between client and server is normally by means of message passing, often over a network, and uses some protocol to encode the client's requests and the server's responses. The server may run continuously (as a daemon), waiting for requests to arrive, or it may be invoked by some higher-level daemon which controls a number of specific servers.</td>
</tr>
<tr>
<td>server farm</td>
<td>A server farm is a network where clients install their own computers to run Web servers, email, or any other TCP/IP based services they require, making use of leased permanent Internet connections with 24-hour worldwide access. Instead of expensive dedicated-line connections to various offices, servers can be placed on server farm networks to have them connected to the Internet at high-speed for a fraction of the cost of a leased line.</td>
</tr>
<tr>
<td>shared drive</td>
<td>A computer peripheral device that is used by more than one person, thus increasing the risk of exposure to viruses.</td>
</tr>
<tr>
<td>signature</td>
<td>See virus signature.</td>
</tr>
<tr>
<td>signature-based spam detection</td>
<td>A method of determining whether an email message is spam by comparing the message contents to entries in a spam database. An exact match must be found for the message to be identified as spam. Signature-based spam detection has a nearly zero false positive rate, but does not detect “new” spam that isn’t an exact match for text in the spam signature file. Also see rule-based spam detection. Also see false positive.</td>
</tr>
<tr>
<td>SMTP</td>
<td>Simple Mail Transfer Protocol—A protocol used to transfer electronic mail between computers, usually over Ethernet. It is a server-to-server protocol, so other protocols are used to access the messages.</td>
</tr>
<tr>
<td>SMTP server</td>
<td>A server that relays email messages to their destinations.</td>
</tr>
<tr>
<td>Term</td>
<td>Explanation</td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
</tr>
<tr>
<td>SNMP</td>
<td>Simple Network Management Protocol—A protocol that supports monitoring of devices attached to a network for conditions that merit administrative attention.</td>
</tr>
<tr>
<td>SNMP trap</td>
<td>A trap is a programming mechanism that handles errors or other problems in a computer program. An SNMP trap handles errors related to network device monitoring. See SNMP.</td>
</tr>
<tr>
<td>spam</td>
<td>Unsolicited email messages meant to promote a product or service.</td>
</tr>
<tr>
<td>spyware</td>
<td>Advertising-supported software that typically installs tracking software on your system, capable of sending information about you to another party. The danger is that users cannot control what data is being collected, or how it is used.</td>
</tr>
<tr>
<td>subnet mask</td>
<td>In larger networks, the subnet mask lets you define subnets. For example, if you have a class B network, a subnet mask of 255.255.255.0 specifies that the first two portions of the decimal dot format are the network number, while the third portion is a subnet number. The fourth portion is the host number. If you do not want to have a subnet on a class B network, you would use a subnet mask of 255.255.0.0. A network can be subnetted into one or more physical networks which form a subset of the main network. The subnet mask is the part of the IP address which is used to represent a subnet network within a network. Using subnet masks allows you to use network address space which is normally unavailable and ensures that network traffic does not get sent to the whole network unless intended. Subnet masks are a complex feature, so great care should be taken when using them. Also see IP address.</td>
</tr>
<tr>
<td>target</td>
<td>The scope of activity to be monitored for a violating event, such as a virus being detected in an email message. For example, you could target virus scanning of all files passing into and out of your network, or just files with a certain file name extension. (Also see action and notification)</td>
</tr>
<tr>
<td>TCP</td>
<td>Transmission Control Protocol—TCP is a networking protocol, most commonly use in combination with IP (Internet Protocol), to govern connection of computer systems to the Internet.</td>
</tr>
<tr>
<td>Telnet</td>
<td>The Internet standard protocol for remote login that runs on top of TCP/IP (Transmission Control Protocol/Internet Protocol). This term can also refer to networking software that acts as a terminal emulator for a remote login session.</td>
</tr>
</tbody>
</table>
Glossary of Terms

<table>
<thead>
<tr>
<th>Term</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>top-level domain</td>
<td>The last and most significant component of an Internet fully qualified domain name, the part after the last “.”. For example, host wombat.doc.ic.ac.uk is in top-level domain “uk” (for United Kingdom).</td>
</tr>
<tr>
<td>Total Solution CD</td>
<td>A CD containing the latest product versions and all the patches that have been applied during the previous quarter. The Total Solution CD is available to all Trend Micro Premium Support customers.</td>
</tr>
<tr>
<td>traffic</td>
<td>Data flowing between the Internet and your network, both incoming and outgoing.</td>
</tr>
<tr>
<td>Transmission Control Protocol/Internet Protocol (TCP/IP)</td>
<td>A communications protocol which allows computers with different operating systems to communicate with each other. Controls how data is transferred between computers on the Internet.</td>
</tr>
<tr>
<td>trigger</td>
<td>An event that causes an action to take place. For example, your Trend Micro product detects a virus in an email message. This may trigger the message to be placed in quarantine, and a notification to be sent to the system administrator, message sender, and message recipient.</td>
</tr>
<tr>
<td>Trojan Horse</td>
<td>A malicious program that is disguised as something benign. A Trojan is an executable program that does not replicate, but instead, resides on a system to perform malicious acts, such as opening a port for an intruder.</td>
</tr>
<tr>
<td>true-file type</td>
<td>Used by IntelliScan, a virus scanning technology, to identify the type of information in a file by examining the file headers, regardless of the file name extension (which could be misleading).</td>
</tr>
<tr>
<td>trusted domain</td>
<td>A domain from which your Trend Micro product will always accept messages, without considering whether the message is spam. For example, a company called Dominion, Inc. has a subsidiary called Dominion-Japan, Inc. Messages from dominion-japan.com are always accepted into the dominion.com network, without checking for spam, since the messages are from a known and trusted source.</td>
</tr>
<tr>
<td>trusted host</td>
<td>A server that is allowed to relay mail through your network because they are trusted to act appropriately and not, for example, relay spam through your network.</td>
</tr>
</tbody>
</table>
Term | Explanation
--- | ---
tunneling | A method of sending data that enables one network to send data via another network’s connections. Tunneling is used to get data between administrative domains which use a protocol that is not supported by the internet connecting those domains. With VPN tunneling, a mobile professional dials into a local Internet Service Provider's Point of Presence (POP) instead of dialing directly into their corporate network. This means that no matter where mobile professionals are located, they can dial a local Internet Service Provider that supports VPN tunneling technology and gain access to their corporate network, incurring only the cost of a local telephone call. When remote users dial into their corporate network using an Internet Service Provider that supports VPN tunneling, the remote user as well as the organization knows that it is a secure connection. All remote dial-in users are authenticated by an authenticating server at the Internet Service Provider's site and then again by another authenticating server on the corporate network. This means that only authorized remote users can access their corporate network, and can access only the hosts that they are authorized to use.
tunnel interface | A tunnel interface is the opening, or doorway, through which traffic to or from a VPN tunnel passes. A tunnel interface can be numbered (that is, assigned an IP address) or unnumbered. A numbered tunnel interface can be in either a tunnel zone or security zone. An unnumbered tunnel interface can only be in a security zone that contains at least one security zone interface. The unnumbered tunnel interface borrows the IP address from the security zone interface. Also see Virtual Private Network (VPN).
tunnel zone | A tunnel zone is a logical segment that hosts one or more tunnel interfaces. A tunnel zone is associated with a security zone that acts as its carrier.
URL | Universal Resource Locator—A standard way of specifying the location of an object, typically a Web page, on the Internet, for example, www.trendmicro.com. The URL maps to an IP address using DNS.
<table>
<thead>
<tr>
<th>Term</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>VBscript virus</td>
<td>VBscript (Microsoft Visual Basic scripting language) is a simple programming language that allows Web developers to add interactive functionality to HTML pages displayed in a browser. For example, developers might use VBscript to add a “Click Here for More Information” button on a Web page. A VBscript virus is a virus that is targeted at these scripts in the HTML code. This enables the virus to reside in Web pages and download to a user’s desktop through the user’s browser. Also see JavaScript virus.</td>
</tr>
<tr>
<td>virtual IP address (VIP address)</td>
<td>A VIP address maps traffic received at one IP address to another address based on the destination port number in the packet header.</td>
</tr>
<tr>
<td>Virtual Local Area Network (VLAN)</td>
<td>A logical (rather than physical) grouping of devices that constitute a single broadcast domain. VLAN members are not identified by their location on a physical subnetwork but through the use of tags in the frame headers of their transmitted data. VLANs are described in the IEEE 802.1Q standard.</td>
</tr>
<tr>
<td>Virtual Private Network (VPN)</td>
<td>A VPN is an easy, cost-effective and secure way for corporations to provide telecommuters and mobile professionals local dial-up access to their corporate network or to another Internet Service Provider (ISP). Secure private connections over the Internet are more cost-effective than dedicated private lines. VPNs are possible because of technologies and standards such as tunneling and encryption.</td>
</tr>
<tr>
<td>virtual router</td>
<td>A virtual router is the component of Screen OS that performs routing functions. By default, Trend Micro GateLock supports two virtual routers: Untrust-VR and Trust-VR.</td>
</tr>
<tr>
<td>virtual system</td>
<td>A virtual system is a subdivision of the main system that appears to the user to be a stand-alone entity. Virtual systems reside separately from each other in the same Trend Micro GateLock remote appliance; each one can be managed by its own virtual system administrator.</td>
</tr>
</tbody>
</table>
A computer virus is a program – a piece of executable code – that has the unique ability to infect. Like biological viruses, computer viruses can spread quickly and are often difficult to eradicate.

In addition to replication, some computer viruses share another commonality: a damage routine that delivers the virus payload. While payloads may only display messages or images, they can also destroy files, reformat your hard drive, or cause other damage. Even if the virus does not contain a damage routine, it can cause trouble by consuming storage space and memory, and degrading the overall performance of your computer.

<table>
<thead>
<tr>
<th>Term</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>virus</td>
<td>A template of source code for building and executing a virus, available from the Internet.</td>
</tr>
<tr>
<td>virus signature</td>
<td>A virus signature is a unique string of bits that identifies a specific virus. Virus signatures are stored in the Trend Micro virus pattern file. The Trend Micro scan engine compares code in files, such as the body of an email message, or the content of an HTTP download, to the signatures in the pattern file. If a match is found, the virus is detected, and is acted upon (for example, cleaned, deleted, or quarantined) according to your security policy.</td>
</tr>
<tr>
<td>virus trap</td>
<td>Software that helps you capture a sample of virus code for analysis.</td>
</tr>
<tr>
<td>virus writer</td>
<td>Another name for a computer hacker, someone who writes virus code.</td>
</tr>
<tr>
<td>Web</td>
<td>The World Wide Web, also called the Web or the Internet.</td>
</tr>
<tr>
<td>Web server</td>
<td>A server process running at a Web site which sends out Web pages in response to HTTP requests from remote browsers.</td>
</tr>
<tr>
<td>wildcard</td>
<td>A term used in reference to content filtering, where an asterisk (*) represents any characters. For example, in the expression "ber", this expression can represent barber, number, plumber, timber, and so on. The term originates from card games, in which a specific card, identified as a "wildcard," can be used for any number or suit in the card deck.</td>
</tr>
<tr>
<td>working directory</td>
<td>The destination directory in which the main application files are stored, such as /etc/iscan/iwsa.</td>
</tr>
</tbody>
</table>
Glossary of Terms

<table>
<thead>
<tr>
<th>Term</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>workstation (also known as client)</td>
<td>A general-purpose computer designed to be used by one person at a time and which offers higher performance than normally found in a personal computer, especially with respect to graphics, processing power and the ability to carry out several tasks at the same time.</td>
</tr>
<tr>
<td>worm</td>
<td>A self-contained program (or set of programs) that is able to spread functional copies of itself or its segments to other computer systems.</td>
</tr>
<tr>
<td>zip file</td>
<td>A compressed archive (in other words, "zip file") from one or more files using an archiving program such as WinZip.</td>
</tr>
<tr>
<td>"Zip of Death"</td>
<td>A zip (or archive) file of a type that when decompressed, expands enormously (for example 1000%) or a zip file with thousands of attachments. Compressed files must be decompressed during scanning. Huge files can slow or stop your network.</td>
</tr>
<tr>
<td>zone</td>
<td>A zone can be a segment of network space to which security measures are applied (a security zone), a logical segment to which a VPN tunnel interface is bound (a tunnel zone), or a physical or logical entity that performs a specific function (a function zone).</td>
</tr>
</tbody>
</table>
Index

A
access control
 by client IP 45
 FTP 177
identifying clients/servers 44
settings 44
access control settings 243
access log 205
 upstream proxy 205
access quota policies 242
access quotas 9, 135
 adding 136
 deactivating 139
 exceeding during a download 136
 Guest Policy 136
 introducing 136
 managing 136
actions
 infected file (FTP) 176
 Macro Scan (FTP) 177
 password-protected file (FTP) 177
 uncleanable file (FTP) 176
active FTP 169
ActiveUpdate 15
 incremental updates 22
 without Control Manager 15
ActiveX objects
 security rules 123
 signature verification 112, 128
additional risks
 defined 104
anonymous FTP 41
Anti-virus scan engine 17
Applets and ActiveX security 2, 8
 adding/modifying policies 115
digital certificates 129
 enabling 115
 how it works 111–112

B
Blue Coat appliance
 setting up 54

C
 cache
 flushing 60
 policy settings 246
 cache appliance
 flushing 60
Cisco CE ICAP server 57
client IP to user ID cache 251
cluster configuration 59
comma-separated value (CSV) 10
 security settings 99
 concurrent connections 42
configuration files 267, 270
controlled pattern releases (CPRs) 28
 incremental updates 28
 installing 28
 CSV 10
cyrus-sasl-2.1.19 274

D
database
 and log files 205
 connection settings 246
 testing connection 246
delete 201
dependent mode 36
destination ports (FTP) 180
digital certificates
 managing 129
directory (LDAP) server
 performance 250

notifications 133, 228
settings 124
 thread groups 122
architecture 267
audit log 206
disease vector 148
documentation set xii

E

EICAR test file 235, 258
enable_ip_user_cache 251
ESMTP 219

F

false alarm 27
file types 95
 blocking 94
 specifying (FTP) 171
flagged certificates 117
flushing the cache 59
forced updates 27
FTP
 anonymous 41
 port restrictions 180
 security risks 1
 turning on/off the service 170
FTP Get log 211
FTP over HTTP 38, 103
FTP proxy 169
FTP Put log 211
FTP scanning 10
 compressed files 172, 175
 configuring 172
 enabling 170–171
 file blocking 171
 files to scan 171
 large files 172
 notifications 226
 options 170
 priority 172
 proxy settings 168
 quarantine 173
 scan direction 171
 server IP white list 179
 settings 169, 173

G

Global Policy 63, 65
glossary 258, 321
grayware
 defined 104

Guest Account 242
Guest Policy 63, 65
 about 65
 guest port 63
 enabling 66

H

heimdal-0.6.2 274
hot fixes 244
HTTP
 enabling/disabling traffic 32
 file types to block 94
 file types to scan 95
 port restrictions 48
 security threats 1
 service, turning on/off 32
HTTP scanning
 compressed files 99
 creating/modifying policies 88
 deferred scanning 101, 103
 enabling/disabling 86
 file blocking 94
 files to scan 95
 intranet sites 141
 large files 100
 notifications 223
 performance 87
 priority 99
 progress page 101
 quarantine 104
 rules 94
 scan actions 106
 scan before delivering 100, 103
 scan events 107
 security settings 99
 settings 31
 skipping files 87
 trusted URLs 141
HTTPS
 port restrictions 50
 scanning 41

ICAP mode
 Bypass on Failure 53
cache servers 52
license key 52
multiple servers 53
post-install tasks 43, 52
ICSA certification 21
incremental pattern file updates 22
installation
Blue Coat appliance 54, 57
NetCache appliance 52
instrumentation 114
IntelliScan 95
ip_user Central cache interval 251
iscan_web_protocol 249
iscan_web_server 249
IWSA
testing 235, 248
IWSA
components 267
features 8
main features 8
modules 267
services 268
IWSSPIUrlFilter.dsc 162

J
Java Applet and ActiveX scanning 126
Java applets
instrumentation settings 118
instrumenting 114
real-time monitoring 115
security rules 117
signature status 117
signature validation 125
signature verification 113
Java runtime 55

K
Kerberos 273
Knowledge Base xii
URL xii, 257

L
large file handling
deferred scanning 103
HTTP 44, 100
important notes 103
LDAP
AD Global Catalog 78
attribute names 74
authentication 72
communication flows 73
configuring 73
matching across referral servers 77
referral servers 76
supported directories 71
testing connection 77
ldapsearch 280
LDIF files 283
listening port 41, 248
log files
FTP Get Log 211
FTP Put Log 211
naming conventions 215
URL blocking log 207
virus log 217
log settings 213
logs 7, 10
deleting 211–212
exporting 217
exporting as CSV files 217
exporting to Microsoft Excel 217
file naming conventions 215
folders 214
introduction 204
querying/viewing 206
reporting 204
system 204
lpt$vpn.xyz 27

M
macro scanning 107
actions 107
Maintenance Agreement
renewing 14
management console
password 247
MIME-type 87, 97, 261
mixed threats 1
multiple installs 10
multiple servers 43
N
NetCache appliance
setting up 52
notifications 10, 176
administrator vs. user 218
configuring 223
e-mail settings 219
ESMTP support 219
introduction 218
SNMP 233
tokens 219
using HTML tags 223
using variables in 220

O
online help xii
OpenLDAP 273
attribute equivalence 282
sample ldap.conf 274
sample slapd.com 275
software compatibility 274
openldap-2.2.17 274
openssl-0.9.7d 274
operating system
update 245
Outbreak Prevention Policy (OPP) 208
defined rule 208
ID 209

P
passive FTP 169
password 247
tips for creating 247
patches 14, 244
pattern files 17
deleting 28
manually deleting 28
several on server 18
spyware/grayware 19
version numbering 18–19
pattern matching 18
performance log 210
performance tuning 250
phishing 147–148
URLs 149

PhishTrap 19
benefits 147
blocking 148
categories 148
criteria for inclusion 148
defined rule 209
overview 148
submitting URLs 149
policies
configuring the scope 78
default 65
how they work 64
practical examples 64
request mode 56
response mode 55
product maintenance 257
progress page 100
protocol handlers 271
proxy
caching 36
configuring 34
examples 35
listening port 41
reverse 7, 39
settings 15, 41
stand-alone mode 33
upstream proxy (dependent mode) 36

Q
quarantined files
encrypting 173

R
readme xii, 14
RealAudio 97
receive greeting 176
register_user_agent_header.exe 70
registration
URL 14
Registration Profile 14
reports 7, 10
archiving 202
availability 196
blocking-event 190
chart types 193
configuring logs 215
consolidated vs. individual 193
customizing 202
daily 198
deleting scheduled 201
introduction 190
real-time 193
scheduled 198
setting the scope 192
settings 192–193
traffic 191
types 190
REQMOD 47
RESPMOD 47
reverse proxy 39
configuring 40
DNS changes 41
risk ratings 258
rollback 27
root certificates 126
S
scan engine 20
events that trigger an update 21
ICSA certification 21
updates to 21
updating 21
URL to find current version 21
scanning
modules 272
select file types 96
scanning modules 272
scheduled tasks 269
Security Information Center 250, 257–258
security patches 244
server clusters 58
deleting 59
server designation 43
server IP white list
adding servers 47
ICAP mode 47
ServerIPWhiteList.ini 47
service packs 244
signature status
revocation status 127
untrusted 127
slapadd 279
slapcat 280
slapd.conf 275
slapindex 280
slaptest 280
SNMP 6, 10, 233
SolutionBank—see Knowledge Base xii
spyware/grayware 148
reports 10
scanning rules 104
spyware/grayware log 207
suspicious files 256
system
log directories, configuration 215
T
technical support
contacting 254
testing
download scanning 239
FTP scanning 237
upload scanning 236
URL blocking 238
URL filtering 239
time-to-live (TTL) 136, 246
tokens in notifications 220
transparency 38
Trend Micro
contact information 254
ture file type 95
trusted URLs 9, 141
importing 142
managing 142
TTL 136
U
uniquemember 283
upgrades 23
components 17, 22
disabling scheduled updates 25
forcing 24
incremental 22
manual 23
notifications 27, 229