Trend Micro Incorporated reserves the right to make changes to this document and to the products described herein without notice. Before installing and using the software, please review the readme files, release notes, and the latest version of the applicable user documentation, which are available from the Trend Micro Web site at:

http://www.trendmicro.com/download

Trend Micro, the Trend Micro t-ball logo, Deep Security, Control Server Plug-in, Damage Cleanup Services, eServer Plug-in, InterScan, Network VirusWall, ScanMail, ServerProtect, and TrendLabs are trademarks or registered trademarks of Trend Micro, Incorporated. All other product or company names may be trademarks or registered trademarks of their owners.

Document version: 0.11
Document number: APEM96336/140306
Release date: June 2014
Table of Contents

Introduction

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>About Deep Security</td>
<td>6</td>
</tr>
<tr>
<td>What's New in Deep Security 9.5</td>
<td>10</td>
</tr>
<tr>
<td>About This Document</td>
<td>11</td>
</tr>
<tr>
<td>Intended Audience</td>
<td>12</td>
</tr>
</tbody>
</table>

Preparation

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Requirements</td>
<td>14</td>
</tr>
<tr>
<td>What You Will Need (Cloud)</td>
<td>17</td>
</tr>
<tr>
<td>Database Deployment Considerations</td>
<td>20</td>
</tr>
<tr>
<td>Installing a Database for Deep Security (Multi-Tenancy Requirements)</td>
<td>23</td>
</tr>
</tbody>
</table>

Installation

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installing the Deep Security Manager</td>
<td>28</td>
</tr>
<tr>
<td>Silent Install of Deep Security Manager</td>
<td>36</td>
</tr>
<tr>
<td>Deep Security Manager Settings Properties File</td>
<td>38</td>
</tr>
<tr>
<td>Installing the Deep Security Agent</td>
<td>43</td>
</tr>
<tr>
<td>Installing and Configuring a Relay-enabled Agent</td>
<td>54</td>
</tr>
<tr>
<td>Configure Amazon EC2 Resources for Integration with Deep Security</td>
<td>56</td>
</tr>
<tr>
<td>Configure VMware vCloud for Integration with Deep Security</td>
<td>57</td>
</tr>
<tr>
<td>Installing the Deep Security Notifier</td>
<td>60</td>
</tr>
</tbody>
</table>

Quick Start

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quick Start: System Configuration</td>
<td>62</td>
</tr>
<tr>
<td>Quick Start: Protecting a Computer</td>
<td>70</td>
</tr>
</tbody>
</table>

Upgrading

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upgrade Multi-Node Deep Security Manager</td>
<td>79</td>
</tr>
<tr>
<td>Upgrade Deep Security Agents</td>
<td>80</td>
</tr>
<tr>
<td>Upgrade the Deep Security Notifier</td>
<td>82</td>
</tr>
</tbody>
</table>
Appendices

- Deep Security Manager Memory Usage ... 84
- Deep Security Manager Performance Features ... 85
- Enable Multi-Tenancy ... 87
- Multi-Tenancy (Advanced) ... 96
- Creating an SSL Authentication Certificate ... 99
Introduction
About Deep Security

Deep Security provides advanced server security for physical, virtual, and cloud servers. It protects enterprise applications and data from breaches and business disruptions without requiring emergency patching. This comprehensive, centrally managed platform helps you simplify security operations while enabling regulatory compliance and accelerating the ROI of virtualization and cloud projects. The following tightly integrated modules easily expand the platform to ensure server, application, and data security across physical, virtual, and cloud servers, as well as virtual desktops.

Protection Modules

Anti-Malware

Integrates with VMware environments for agentless protection, or provides an agent to defend physical servers and virtual desktops in local mode.

Integrates new VMware vShield Endpoint APIs to provide agentless anti-malware protection for VMware virtual machines with zero in-guest footprint. Helps avoid security brown-outs commonly seen in full system scans and pattern updates. Also provides agent-based anti-malware to protect physical servers, Hyper-V and Xen-based virtual servers, public cloud servers as well as virtual desktops in local mode. Coordinates protection with both agentless and agent-based form factors to provide adaptive security to defend virtual servers as they move between the data center and public cloud.

Web Reputation

Strengthens protection against web threats for servers and virtual desktops.

Integrates with the Trend Micro Smart Protection Network web reputation capabilities to safeguard users and applications by blocking access to malicious urls. Provides same capability in virtual environments in agentless mode through the same virtual appliance that also delivers agentless security technologies for greater security without added footprint.

Firewall

Decreases the attack surface of your physical and virtual servers.

Centralizes management of server firewall policy using a bi-directional stateful firewall. Supports virtual machine zoning and prevents Denial of Service attacks. Provides broad coverage for all IP-based protocols and frame types as well as fine-grained filtering for ports and IP and MAC addresses.

Intrusion Prevention

Shields known vulnerabilities from unlimited exploits until they can be patched.

Helps achieve timely protection against known and zero-day attacks. Uses vulnerability rules to shield a known vulnerability -- for example those disclosed monthly by Microsoft -- from an unlimited number of exploits. Offers out-of-the-box vulnerability protection for over 100 applications, including database, web, email and FTP servers.
Automatically delivers rules that shield newly discovered vulnerabilities within hours, and can be pushed out to thousands of servers in minutes, without a system reboot.

Defends against web application vulnerabilities

Enables compliance with PCI Requirement 6.6 for the protection of web applications and the data that they process. Defends against SQL injections attacks, cross-site scripting attacks, and other web application vulnerabilities. Shields vulnerabilities until code fixes can be completed.

Identifies malicious software accessing the network

Increases visibility into, or control over, applications accessing the network. Identifies malicious software accessing the network and reduces the vulnerability exposure of your servers.

Integrity Monitoring

Detects and reports malicious and unexpected changes to files and systems registry in real time. Now available in agentless form factor.

Provides administrators with the ability to track both authorized and unauthorized changes made to the instance. The ability to detect unauthorized changes is a critical component in your cloud security strategy as it provides the visibility into changes that could indicate the compromise of an instance.

Log Inspection

Provides visibility into important security events buried in log files.

Optimizes the identification of important security events buried in multiple log entries across the data center. Forwards suspicious events to a SIEM system or centralized logging server for correlation, reporting and archiving. Leverages and enhances open-source software available at OSSEC.

Deep Security Components

Deep Security consists of the following set of components that work together to provide protection:

- **Deep Security Virtual Appliance** is a security virtual machine built for VMware vSphere environments that Agentlessly provides Anti-Malware, Web Reputation Service, Firewall, Intrusion Prevention, and Integrity Monitoring protection to virtual machines.

- **Deep Security Agent** is a security agent deployed directly on a computer which provides Anti-Malware, Web Reputation Service, Firewall, Intrusion Prevention, Integrity Monitoring, and Log Inspection protection to computers on which it is installed.

- **Deep Security Relay** is an optional function of the Deep Security Agent which can be enabled or disabled. The Relay distributes Software and Security Updates throughout your network of Deep Security components.

- **Deep Security Notifier** is a Windows System Tray application that communicates information on the local computer about security status and events, and, in the case of Deep Security Relays, also provides information about the Security Updates being distributed from the local machine.
Deep Security Manager

Deep Security Manager ("the Manager") is a powerful, centralized web-based management system that allows security administrators to create and manage comprehensive security policies and track threats and preventive actions taken in response to them. Deep Security Manager integrates with different aspects of the datacenter including VMware vCenter and Microsoft Active Directory, and has a web services API for integration with datacenter automation environments.

Policies

Policies are templates that specify the settings and security rules to be configured and enforced automatically for one or more computers. These compact, manageable rule sets make it simple to provide comprehensive security without the need to manage thousands of rules. Default Policies provide the necessary rules for a wide range of common computer configurations.

Dashboard

The customizable, web-based UI makes it easy to quickly navigate and drill down to specific information. It provides:

- Extensive system, event and computer reporting
- Graphs of key metrics with trends
- Detailed event logs
- Ability to save multiple personalized dashboard layouts

Built-in Security

Role-based access allows multiple administrators (Users), each with different sets of access and editing rights, to edit and monitor different aspects of the system and receive information appropriate to them. Digital signatures are used to authenticate system components and verify the integrity of rules. Session encryption protects the confidentiality of information exchanged between components.

Deep Security Virtual Appliance

The Deep Security Virtual Appliance runs as a VMware virtual machine and protects the other virtual machines on the same ESXi Server, each with its own individual security policy.

Deep Security Agent

The Deep Security Agent ("the Agent") is a high performance, small footprint, software component installed on a computer to provide protection.

Deep Security Relay

The Deep Security Relay is an optional function of the Deep Security Agent. It is a server which relays Updates from the Trend Micro global update server throughout your Deep Security network. You can enable multiple
Relays and organize them into hierarchical groups to more efficiently distribute Updates throughout your network.

Deep Security Notifier

The Deep Security Notifier is a Windows System Tray application that communicates the state of the Deep Security Agent and Deep Security Relay to client machines. The Notifier displays pop-up user notifications when the Deep Security Agent begins a scan, or blocks malware or access to malicious web pages. The Notifier also provides a console utility that allows the user to view events and configure whether pop-ups are displayed.
What's New in Deep Security 9.5

VMware vSphere 5.5 Support

- Security for Software-Defined Data Center NSX
- Support for mixed-model deployments (NSX and vShield)

Smarter, Lightweight Agent

- Lightweight installer
- Selective deployment of Protection Modules to Agents based on Security Policy requirements results in smaller Agent footprint
- Automatic support for new Linux Kernels

Trend Micro Control Manager Enhancements

- More dashboard widgets with drill-down capability
- Full Events for malware and web reputation

Linux Support

- New distributions: CloudLinux, Oracle Unbreakable
- On-demand Anti-Malware scanning for all distributions
- Real-Time Anti-Malware for Red Hat and SuSE

Improvements to Security and Software Update Management

- Improved visibility into Update status
- Improved accessibility to Software Updates

Multi-Tenant Improvements

- Sign in as a Tenant
- Security Model Usage Report
About This Document

Deep Security 9.5 Installation Guide (Cloud)

This document describes how to use Agent-based protection to secure your cloud-based computing resources with Deep Security 9.5.

This document covers:

1. System Requirements
2. Preparation
3. Database configuration guidelines
4. Installing the Deep Security Manager management console
5. Deploying Deep Security Agents to your cloud instances
7. Guidelines for monitoring and maintaining your Deep Security installation

Intended Audience

This document is intended for anyone who wants to implement Agent-based Deep Security 9.5 protection in a cloud environment. The information is intended for experienced cloud administrators who have good experience with cloud deployments and scripting languages. This document assumes specific familiarity with either Amazon EC2 or VMware vCloud cloud operations.

Other Deep Security 9.5 Documentation

- Deep Security 9.5 Installation Guide (Basic Components)
- Deep Security 9.5 Installation Guide (VMware NSX)
- Deep Security 9.5 Installation Guide (Vmware vShield)
- Deep Security 9.5 Supported Features and Platforms
- Deep Security 9.5 Supported Linux Kernels
Intended Audience

This publication is intended for network administrators who need to install, configure, and administer Deep Security. It is assumed that you have a good understanding of:

- skill one (for using feature one)
- skill two (for using feature two)
- Powershell 2.0 (for using automated Agent deployment scripts)

If you are deploying Agentless protection in a VMware vSphere environment, it is assumed that you have a good understanding of:

- skill one (for feature one)
- skill two (for feature two)

If you are deploying Agent-based protection to the cloud, it is assumed that you have a good understanding of:

- Amazon Web Services EC2 and the provisioning of resources in that environment
Preparation
System Requirements

Deep Security Manager

- **Memory**: 8GB, which includes:
 - 4GB heap memory
 - 1.5GB JVM overhead
 - 2GB operating system overhead
- **Disk Space**: 1.5GB (5GB recommended)
- **Operating System**: Windows Server 2012 (64-bit), Windows Server 2012 R2 (64-bit), Windows Server 2008 (64-bit), Windows Server 2008 R2 (64-bit), Windows 2003 Server SP2 (64-bit), Windows 2003 Server R2 (64-bit), Red Hat Linux 5/6 (64-bit)
- **Database**: Oracle 11g, Oracle 11g Express, Oracle 10g, Oracle 10g Express, Microsoft SQL Server 2014, Microsoft SQL Server 2014 Express, Microsoft SQL Server 2012, Microsoft SQL Server 2012 Express, Microsoft SQL Server 2008, Microsoft SQL Server 2008 Express, Microsoft SQL Server 2008 R2, Microsoft SQL Server 2008 R2 Express
- **Web Browser**: Firefox 24+, Internet Explorer 9.x, Internet Explorer 10.x, Internet Explorer 11.x, Chrome 33+, Safari 6+. (Cookies enabled.)
 - **Monitor**: 1024 x 768 resolution at 256 colors or higher

Deep Security Agent

- **Memory**:
 - **with Anti-Malware protection**: 512MB
 - **without Anti-Malware protection**: 128MB
- **Disk Space**:
 - **with Anti-Malware protection**: 1GB
 - **without Anti-Malware protection**: 500MB
 - **with Relay functionality enabled**: 8GB
 - **With Relay functionality enabled**: All Windows versions (64-bit only)
- **Linux**: Red Hat 5 (32-bit and 64-bit), Red Hat 6 (32-bit and 64-bit), Oracle Linux 5 (32-bit and 64-bit), Oracle Linux 6 (32-bit and 64-bit), CentOS 5 (32-bit and 64-bit), CentOS 6 (32-bit and 64-bit), SuSE 10 SP3 and SP4 (32-bit and 64-bit), SuSE 11 SP1, SP2, and SP3 (32-bit and 64-bit), CloudLinux 5 (32-bit and 64-bit), CloudLinux 6 (32-bit and 64-bit)
 - **With Relay functionality enabled**: All Linux versions (64-bit only)
Deep Security Virtual Appliance

- **Memory**: 4GB (Memory requirements can vary depending on the number of VMs being protected).
- **Disk Space**: 20GB
- **VMware Environment**:
 - **NSX Environment**: VMware vCenter 5.5, with ESXi 5.5
 - **vShield Environment**: VMware vCenter 5.0, 5.1, or 5.5, with ESXi 5.0, 5.1, or 5.5
- **Additional VMware Utilities**:
 - **NSX Environment**: VMware Tools 9.4, VMware vCenter Server Appliance 5.5, VMware NSX Manager 6.1
 - **vShield Environment**: VMware Tools, VMware vShield Manager 5.0, 5.1, or 5.5, VMware vShield Endpoint Security 5.0, 5.1, or 5.5 (ESXi5 patch ESXi500-201109001 or later for vShield Endpoint Driver)
- **VMware Endpoint Protection supported guest platforms**:
 - **Linux**: Red Hat 5 (32-bit and 64-bit), Red Hat 6 (32-bit and 64-bit), Oracle Linux 5 (32-bit and 64-bit), Oracle Linux 6 (32-bit and 64-bit), CentOS 5 (32-bit and 64-bit), CentOS 6 (32-bit and 64-bit), SuSE 10 (32-bit and 64-bit), SuSE 11 (32-bit and 64-bit)

Note: Your VMware vCenter must be either an NSX Environment or a vShield Environment, not a mixture of the two. If you want to use both NSX and vShield, they must be in separate vCenters. You can add more than one vCenter to Deep Security Manager.

Note: The Deep Security Virtual Appliance uses 64-bit CentOS/Red Hat (included in the Virtual Appliance software package). Because the Deep Security Virtual Appliance uses the same Protection Module plug-ins as Deep Security Agents, importing an update to the 64-bit Red Hat Agent software can lead to a notification that new software is available for the Virtual Appliance as for Red Hat Agents.

Note: If using **MTU 9000** (jumbo frames), you must use ESXi build 5.5.0.1797756 or later.

ESXi Requirements for the Deep Security Virtual Appliance

In addition to the ESXi standard system requirements, the following specifications must be met:

- **CPU**: 64-bit, Intel-VT or AMD-V present and enabled in BIOS
- **Supported vSwitches**:
 - **NSX**: vSphere Distributed Switch (vDS)
 - **vShield**: vSphere Standard Switch (vSS) or third party vSwitch (Cisco Nexus 1000v)
Deep Security Notifier System Requirements

Note: On VMs protected by a Virtual Appliance, the Anti-Malware module must be licensed and enabled on the VM for the Deep Security Notifier to display information.

VMware does not support running nested ESXi servers in production environments. For more information, see this [VMware Knowledge Base article](#).
What You Will Need (Cloud)

Deep Security Software Packages

Deep Security Manager: Download a copy of the Deep Security Manager install package from the Trend Micro Download Center:

http://downloadcenter.trendmicro.com/

Note: To manually confirm that you possess a legitimate version of each install package, use a hash calculator to calculate the hash value of the downloaded software and compare it to the value published on the Trend Micro Download Center Web site.

Deep Security Agents: Once the Deep Security Manager is installed, use it to import the Deep Security Agent software packages for the platform you are going to protect.

Other "supporting" packages (such as linux kernel support updates) are available for download as well. You can download these packages as required, using the Deep Security Manager. For instructions on importing Agent software, see Installing the Deep Security Agent.

License (Activation Codes)

You will require Deep Security Activation Codes for the protection modules and a separate Activation Code for Multi-Tenancy if you intend to implement it.

(VMware Licenses will also be required for VMware components.)

Administrator/Root Privileges

You need to have Administrator/Root privileges on the computers on which you will install Deep Security software components.

SMTP Server

You will need an SMTP server to send alert emails. The DSM uses Port 25 by default for connection to the SMTP Server.

Available Ports

On the Deep Security Manager Host

You must make sure the following ports on the machine hosting Deep Security Manager are open and not reserved for other purposes:

- **Port 4120:** The "heartbeat" port, used by Deep Security Agents and Appliances to communicate with Deep Security Manager (configurable).
- **Port 4119**: Used by your browser to connect to Deep Security Manager. Also used for communication from ESXi and requests for Security Updates by the DSVA (configurable).
- **Port 1521**: Bi-directional Oracle Database server port.
- **Ports 1433 and 1434**: Bi-directional Microsoft SQL Server Database ports.
- **Ports 389, 636, and 3268**: Connection to an LDAP Server for Active Directory integration (configurable).
- **Port 25**: Communication to a SMTP Server to send email alerts (configurable).
- **Port 53**: For DNS Lookup.
- **Port 514**: Bi-directional communication with a Syslog server (configurable).
- **Port 443**: Communication with VMware vCloud, vCenter, vShield/NSX Manager and Amazon AWS.

Note: For more details about how each of these ports are used by Deep Security, see **Ports Used** in the Reference section of the online help or the Administrator's Guide.

On the Deep Security Relay, Agents, and Appliances

You must make sure the following ports on the machine hosting Deep Security Relay are open and not reserved for other purposes:

- **Port 4122**: Relay to Agent/Appliance communication.
- **Port 4118**: Manager-to-Agent communication.
- **Port 4123**: Used for internal communication. Should not be open to the outside.
- **Port 80, 443**: connection to Trend Micro Update Server and Smart Protection Server.
- **Port 514**: bi-directional communication with a Syslog server (configurable).

The Deep Security Manager automatically implements specific Firewall Rules to open the required communication ports on machines hosting Deep Security Relays, Agents and Appliances.

Network Communication

Communication between Deep Security Manager and Deep Security Agents/Appliances and hypervisors uses DNS hostnames by default. In order for Deep Security Agent/Appliance deployments to be successful, you must ensure that each computer can resolve the hostname of the Deep Security Manager. This may require that the Deep Security Manager computer have a DNS entry or an entry in the Agent/Appliance computer's hosts file.

Note: You will be asked for this hostname as part of the Deep Security Manager installation procedure. If you do not have DNS, enter an IP address during the installation.

Reliable Time Stamps

All computers on which Deep Security Software is running should be synchronized with a reliable time source. For example, regularly communicating with a Network Time Protocol (NTP) server.

Performance Recommendations

See **Deep Security Manager Performance Features (page 85)**.
Deep Security Manager and Database Hardware

Many Deep Security Manager operations (such as Updates and Recommendation Scans) require high CPU and Memory resources. Trend Micro recommends that each Manager node have four cores and sufficient RAM in high scale environments.

The Database should be installed on hardware that is equal to or better than the specifications of the best Deep Security Manager node. For the best performance the database should have 8-16GB of RAM and fast access to the local or network attached storage. Whenever possible a database administrator should be consulted on the best configuration of the database server and a maintenance plan should be put in effect.

For more information, see *Database Deployment Considerations (page 20)*.

Dedicated Servers

The Deep Security Manager and the database can be installed on the same computer if your final deployment is not expected to exceed 1000 computers (real or virtual). If you think you may exceed 1000 computers, the Deep Security Manager and the database should be installed on dedicated servers. It is also important that the database and the Deep Security Manager be co-located on the same network with a 1GB LAN connection to ensure unhindered communication between the two. The same applies to additional Deep Security Manager Nodes. A two millisecond latency or better is recommended for the connection from the Manager to the Database.

High Availability Environments

If you use VMware’s High Availability (HA) features, make sure that the HA environment is established before you begin installing Deep Security. Deep Security must be deployed on all ESXi hypervisors (including the ones used for recovery operations). Deploying Deep Security on all hypervisors will ensure that protection remains in effect after a HA recovery operation.

Note:
When a Virtual Appliance is deployed in a VMware environment that makes use of the VMware Distributed Resource Scheduler (DRS), it is important that the Appliance does not get vMotioned along with the virtual machines as part of the DRS process. Virtual Appliances must be "pinned" to their particular ESXi server. You must actively change the DRS settings for all the Virtual Appliances to "Manual" or "Disabled" (recommended) so that they will not be vMotioned by the DRS. If a Virtual Appliance (or any virtual machines) is set to "Disabled", vCenter Server does not migrate that virtual machine or provide migration recommendations for it. This is known as "pinning" the virtual machine to its registered host. This is the recommended course of action for Virtual Appliances in a DRS environment. An alternative is to deploy the Virtual Appliance onto local storage as opposed to shared storage. When the Virtual Appliance is deployed onto local storage it cannot be vMotioned by DRS. For further information on DRS and pinning virtual machines to a specific ESXi server, please consult your VMware documentation.

Note:
If a virtual machine is vMotioned by DRS from an ESXi protected by a DSVA to an ESXi that is not protected by a DSVA, the virtual machine will become unprotected. If the virtual machine is subsequently vMotioned back to the original ESXi, it will not automatically be protected again unless you have created an Event-based Task to activate and protect computers that have been vMotioned to an ESXi with an available DSVA. For more information, see the Event-Based Tasks sections of the online help or the Administrator's Guide.
Database Deployment Considerations

Refer to your database provider's documentation for instructions on database installation and deployment but keep the following considerations in mind for integration with Deep Security.

Version

Deep Security requires Microsoft SQL Server 2012 or 2008, or Oracle Database 11g or 10g for enterprise deployments. Deep Security Manager comes with an embedded Apache Derby database but this is only suitable for evaluation purposes. (You cannot upgrade from Apache Derby to SQL Server or Oracle Database.)

Install before Deep Security

You must install the database software, create a database instance for Deep Security (if your are not using the default instance), and create a user account for Deep Security before you install Deep Security Manager.

Location

The database must be located on the same network as the Deep Security Manager with a connection speed of 1Gb/s over LAN. (WAN connections are not recommended.)

Dedicated Server

The database should be installed on a separate dedicated machine.

Microsoft SQL Server

- The database account used by the Deep Security Manager must have db_owner rights.
- If using Multi-Tenancy, the database account used by the Deep Security Manager must have dbcreator rights.

Oracle Database

- Start the "Oracle Listener" service and make sure it accepts TCP connections.
- The database account used by the Deep Security Manager must be granted the CONNECT and RESOURCE roles and CREATE SEQUENCE, CREATE TABLE and CREATE TRIGGER system privileges.
- If using Multi-Tenancy, the database account used by the Deep Security Manager must be granted the CREATE USER, DROP USER, ALTER USER, GRANT ANY PRIVILEGE and GRANT ANY ROLE system privileges.
Transport Protocol

The recommended transport protocol is **TCP**.

If using **Named Pipes** to connect to a SQL Server, a properly authenticated Microsoft Windows communication channel must be available between Deep Security Manager host and the SQL Server host. This may already exist if:

- The SQL Server is on the same host as Deep Security Manager.
- Both hosts are members of the same domain.
- A trust relationship exists between the two hosts.

If no such communication channel is available, Deep Security Manager will not be able to communicate to the SQL Server over named pipes.

Connection Settings Used During Deep Security Manager Installation.

During the Deep Security Manager installation, you will be asked for Database connection details. Enter the Database hostname under "Hostname" and the pre-created database for Deep Security under "Database Name".

The installation supports both SQL and Windows Authentication. When using Windows Authentication, click on the "Advanced" button to display additional options. The screenshot above shows an example for connecting to a named SQL instance using Windows Authentication.

Avoid special Characters for the database user name (Oracle)

Although Oracle allows special characters when configuring the database user object, if they are surrounded by quotes. Deep Security does not support special characters for the database user.

Keep the database Name Short (SQL Server)

If using Multi-Tenancy, keeping the main database name short will make it easier to read the database names of your Tenants. (i.e. If the main database is "MAINDB", the first Tenant’s database name will be "MAINDB_1", the second Tenant's database name will be "MAINDB_2", and so on.)

Oracle RAC Support

Deep Security supports:

- SUSE Linux Enterprise Server 11 SP1 with Oracle RAC 11g R2 (v11.2.0.1.0)
- Red Hat Linux Enterprise Server 5.8 with Oracle RAC 11g R2 (v11.2.0.1.0)

If you want to deploy a policy to a server with Oracle RAC, you should disable the firewall first because it can cause communication problems between the Oracle RAC nodes. If you want to enable the firewall, you will need to customize the firewall rules to open the ports required by Oracle. Consult your Oracle documentation to determine which ports need to be open. For example, if you are using Oracle 11g R2, you can refer to this document for information: http://docs.oracle.com/cd/E11882_01/install.112/e41962/ports.htm#BABECFJF
High Availability

The Deep Security database is compatible with database failover protection so long as no alterations are made to the database schema. For example, some database replication technologies add columns to the database tables during replication which can result in critical failures.

For this reason, database mirroring is recommended over database replication.
Installing a Database for Deep Security (Multi-Tenancy Requirements)

Configuring Database User Accounts

SQL Server and Oracle use different terms for database concepts described below.

<table>
<thead>
<tr>
<th>Process where multiple Tenants execute</th>
<th>SQL Server</th>
<th>Oracle</th>
</tr>
</thead>
<tbody>
<tr>
<td>One Tenant’s set of data</td>
<td>Database</td>
<td>Tablespace/User</td>
</tr>
</tbody>
</table>

The following section uses the SQL Server terms for both SQL Server and Oracle.

SQL Server

Since Multi-Tenancy requires the ability for the software to create databases, the **dbcreator** role is required on SQL Server. For example:

![SQL Server dbcreator role](image)

For the user role of the primary Tenant it is important to assign DB owner to the main database:
If desired, rights may be further refined to include only the ability to modify the schema and access the data.

With the **dbcreator** role the databases created by the account will automatically be owned by the same user. For example here are the properties for the user after the first Tenant has been created:
To create the first account on a secondary database server, only the **dbcreator** server role is required. No user mapping has to be defined.

Oracle

Multi-Tenancy in Oracle is similar to SQL Server but with a few important differences. Where SQL Server has a single user account per database server, Oracle uses one user account per Tenant. The user that Deep Security was installed with maps to the primary Tenant. That user can be granted permission to allocate additional users and tablespaces.

Note: Although Oracle allows special characters in database object names if they are surrounded by quotes, Deep Security does not support special characters in database object names. This page on Oracle's web site describes the allowed characters in non-quoted names: http://docs.oracle.com/cd/E11882_01/server.112/e10592/sql_elements008.htm

Note: Deep Security derives Tenant database names from the main (Primary Tenant) Oracle database. For example, if the main database is "MAINDB", the first Tenant's database name will be "MAINDB_1", the second Tenant's database name will be "MAINDB_2", and so on. (Keeping the main database name short will make it easier to read the database names of your Tenants.)

If Multi-Tenancy is enabled, the following Oracle permissions must be assigned:
Tenants are created as users with long random passwords and given the following rights:

For secondary Oracle servers, the first user account (a bootstrap user account) must be created. This user will have an essentially empty tablespace. The configuration is identical to the primary user account.
Installation
Installing the Deep Security Manager

Before You Begin

Database

Before you install Deep Security Manager, you must install database software, create a database and user account for Deep Security Manager to use. For information on installing a database, see Database Deployment Considerations (page 20).

Co-Located Relay-enabled Agent

A Deep Security deployment requires at least one Deep Security Relay (a Deep Security Agent with Relay functionality enabled). Relays distribute Software and Security Updates to Agents/Appliances which keep your protection up to date. Trend Micro recommends installing a Relay-enabled Agent on the same computer as the Deep Security Manager to protect the host computer and to function as a local Relay.

During the installation of the Deep Security Manager, the installer will look in its local directory for an Agent install package (the full zip package, not just the core Agent installer). If it doesn’t find an install package locally, it will attempt to connect to the Trend Micro Download Center over the Internet and locate an Agent install package there. If it locates an install package in either of those locations, it will give you the option to install a co-located Relay-enabled Agent during the installation of the Deep Security Manager. (If Agent install packages are found in both locations, the latest of the two versions will be selected.) The Agent can be used to protect the Deep Security manager host machine, however it will initially be installed with only the Relay module enabled. To enable protection you will have to apply an appropriate Security Policy.

If no Agent install package is available, the installation of the Deep Security Manager will proceed without it (but you will have to install a Relay-enabled Agent at a later time).

Proxy Server Information

If the Deep Security will need to use a proxy server to connect to Trend Micro Update Servers over the Internet, have your proxy server address, port, and log in credentials ready.

Download the Installer Package

Download the latest version of the Deep Security Manager (and optionally the Deep Security Agent) software from the Trend Micro Download Center at:

http://downloadcenter.trendmicro.com/

Install the Deep Security Manager for Windows

2. **License Agreement:** If you agree to the terms of the license agreement, select **I accept the terms of the Trend Micro license agreement.**

3. **Installation Path:** Select the folder where Deep Security Manager will be installed and click **Next.**

4. **Database:** Select the database you installed previously.
If your database is SQL Server and you are using a named instance, click **Advanced** to enter the specifics.

5. **Product Activation**: Enter your Activation Code(s). Enter the code for All Protection Modules or the codes for the individual modules for which you have purchased a license. You can proceed without entering any codes, but none of the Protection Modules will be available for use. (You can enter your first or additional codes after installation of the Deep Security Manager by going to **Administration > Licenses**.)
6. **Address and Ports:** Enter the hostname, URL, or IP address of this computer. The Manager Address must be either a resolvable hostname, a fully qualified domain name, or an IP address. If DNS is not available in your environment, or if some computers are unable to use DNS, a fixed IP address should be used instead of a hostname. Optionally, change the default communication ports: The "Manager Port" is the port on which the Manager's browser-based UI is accessible through HTTPS. The "Heartbeat Port" is the port on which the Manager listens for communication from the Agents/Appliances.

7. **Administrator Account:** Enter a username and password for the Master Administrator account. Selecting the Enforce strong passwords (recommended) requires this and future administrator passwords to include upper and lower-case letters, non-alphanumeric characters, and numbers, and to require a minimum number of characters.

Note: If you have admin rights on the Manager host machine, you can reset an account password using the `dsm_c -action unlockout -username USERNAME -newpassword NEWPASSWORD` command.
8. **Automatic Updates:** Selecting the *Create Scheduled Task* option will create a Scheduled Task to automatically retrieve the latest Security and Software Updates from Trend Micro and distribute them to your Agents and Appliances. (You can configure Updates later using the Deep Security Manager.) If the Deep Security Manager will need to use a proxy to connect to the Trend Micro Update servers over the Internet, select *Use Proxy Server when connecting to Trend Micro to check for Security Updates* and enter your proxy information.

9. **Co-Located Relay-enabled Agent:** If an Agent install package is available either in the local folder or from the Trend Micro Download Center, you will be given the option to install a co-located Relay-enabled Agent. Any Deep Security installation requires at least one Relay to download and distribute Security and Software Updates. If you don't install a Relay-enabled Agent now, you will need to do so at a later time.
10. **Smart Protection Network:** Select whether you want to enable Trend Micro Smart Feedback (recommended). (You can enable or configure Smart Feedback later using the Deep Security Manager). Optionally enter your industry by selecting from the drop-down list.

11. **Installation Information:** Verify the information you entered and click **Install** to continue.
12. Select **Launch the Deep Security Manager console** to open a web browser to the Deep Security Manager URL when setup is complete. Click **Finish** to close the Setup wizard.

The Deep Security Manager service will start when setup is complete. The installer places a shortcut to Deep Security Manager in the program menu. You should take note of this URL if you want to access the Manager from a remote location.

Installing the Deep Security Manager for Linux

The sequence of steps for installing Deep Security Manager on a Linux OS with X Window System are the same as those described for Windows (above). For information on performing a silent Linux installation, see **Silent Install of Deep Security Manager (page 36)**.
If you are installing Deep Security Manager on Linux with iptables enabled, you will need to configure the iptables to allow traffic on TCP ports 4119 and 4120.

Starting Deep Security Manager

The Deep Security Manager service starts automatically after installation. The service can be started, restarted and stopped from the Microsoft Services Management Console. The service name is "Trend Micro Deep Security Manager".

To run the Web-based management console, go to the Trend Micro program group in the Start menu (MS Windows) or K-Menu (X Windows) and click Deep Security Manager.

To run the Web-based management console from a remote computer you will have to make note of the URL:

https://[hostname]:[port]/

where [hostname] is the hostname of the server on which you have installed Deep Security Manager and [port] is the "Manager Port" you specified in step 8 of the installation (4119 by default).

Users accessing the Web-based management console will be required to sign in with their User Account credentials. (The credentials created during the installation can be used to log in and create other User accounts.)

Note: The Deep Security Manager creates a 10-year self-signed certificate for the connections with Agents/Appliances, Relays, and Users' web browsers. However, for added security, this certificate can be replaced with a certificate from a trusted certificate authority (CA). (Such certificates are maintained after a Deep Security Manager upgrade.) For information on using a certificate from a CA, see Creating an SSL Authentication Certificate (page 99).
Silent Install of Deep Security Manager

Windows

To initiate a silent install on Windows:

Manager-Windows-<Version>.x64.exe -q -console -Dinstall4j.language=<ISO code> -varfile <PropertiesFile>

Linux

To initiate a silent install on Linux:

Manager-Linux-<Version>.x64.sh -q -console -Dinstall4j.language=<ISO code> -varfile <PropertiesFile>

Parameters

The "-q" setting forces install4j to execute in unattended (silent) mode.

The "-console" setting forces messages to appear in the console (stdout).

The -Dinstall4j.language=<ISO code> options lets you override the default installation language (English). Specify a language using standard ISO language identifiers:

- Japanese: *jp*
- Simplified Chinese: *zh_CN*

The <PropertiesFile> argument is the complete/absolute path to a standard Java properties file. Each property is identified by its equivalent GUI screen and setting in the Windows Deep Security Manager installation (described above). For example, the Deep Security Manager address on the "Address and Ports" screen is specified as:

AddressAndPortsScreen.ManagerAddress=

Most of the properties in this file have acceptable defaults and may be omitted. The only required values for a simple installation using an embedded database are:

LicenseScreen.License
CredentialsScreen.Administrator.Username
CredentialsScreen.Administrator.Password

For a complete description of available settings, see Deep Security Manager Settings Properties File (page 38).

Sample Properties File

The following is an example of the content of a typical properties file:

AddressAndPortsScreen.ManagerAddress=10.201.111.91
AddressAndPortsScreen.NewNode=True
UpgradeVerificationScreen.Overwrite=False
LicenseScreen.License.-1=XY-ABCD-ABCDE-ABCDE-ABCDE-ABCDE-ABCDE
DatabaseScreen.DatabaseType=Oracle
DatabaseScreen.Hostname=10.201.xxx.xxx
DatabaseScreen.Transport=TCP
DatabaseScreen.DatabaseName=XE
DatabaseScreen.Username=DSM
DatabaseScreen.Password=xxxxxxxx
AddressAndPortsScreen.ManagerPort=4119
AddressAndPortsScreen.HeartbeatPort=4120
CredentialsScreen.Administrator.Username=masteradmin
CredentialsScreen.Administrator.Password=xxxxxxxx
CredentialsScreen.UseStrongPasswords=False
SecurityUpdateScreen.UpdateComponents=True
SecurityUpdateScreen.UpdateSoftware=True
RelayScreen.Install=True
SmartProtectionNetworkScreen.EnableFeedback=False
Deep Security Manager Settings Properties File

This section contains information about the contents of the Property file that can be used in a command-line installation (silent Install) of the Deep Security Manager. (See Silent Install of Deep Security Manager (page 36).)

Settings Properties File

The format of each entry in the settings property file is:

(Screen Name).<Property Name>=<Property Value>

The settings properties file has required and optional values.

Note: For optional entries, supplying an invalid value will result in the default value being used.

Required Settings

LicenseScreen

<table>
<thead>
<tr>
<th>Property</th>
<th>Possible Values</th>
<th>Default Value</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>LicenseScreen.License.-1=<value></td>
<td><AC for all modules></td>
<td>blank</td>
<td></td>
</tr>
</tbody>
</table>
| OR

<table>
<thead>
<tr>
<th>Property</th>
<th>Possible Values</th>
<th>Default Value</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>LicenseScreen.License.0=<value></td>
<td><AC for Anti-Malware></td>
<td>blank</td>
<td></td>
</tr>
<tr>
<td>LicenseScreen.License.1=<value></td>
<td><AC for Firewall/DPI></td>
<td>blank</td>
<td></td>
</tr>
<tr>
<td>LicenseScreen.License.2=<value></td>
<td><AC for Integrity Monitoring></td>
<td>blank</td>
<td></td>
</tr>
<tr>
<td>LicenseScreen.License.3=<value></td>
<td><AC for Log Inspection></td>
<td>blank</td>
<td></td>
</tr>
</tbody>
</table>

CredentialsScreen

<table>
<thead>
<tr>
<th>Property</th>
<th>Possible Values</th>
<th>Default Value</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>CredentialsScreen.Administrator.Username=<value></td>
<td><username for master administrator></td>
<td>blank</td>
<td></td>
</tr>
<tr>
<td>CredentialsScreen.Administrator.Password=<value></td>
<td><password for the master administrator></td>
<td>blank</td>
<td></td>
</tr>
</tbody>
</table>

Optional Settings

LanguageScreen

<table>
<thead>
<tr>
<th>Property</th>
<th>Possible Values</th>
<th>Default Value</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dinstall4j.language=<value></td>
<td><null></td>
<td><null></td>
<td>** = English, "jp" = Japanese, "zh_CN" = Simplified Chinese</td>
</tr>
</tbody>
</table>
UpgradeVerificationScreen

Note: This screen/setting is not referenced unless an existing installation is detected.

<table>
<thead>
<tr>
<th>Property</th>
<th>Possible Values</th>
<th>Default Value</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>UpgradeVerificationScreen.Overwrite=<value></td>
<td>True, False</td>
<td>False</td>
<td></td>
</tr>
</tbody>
</table>

Note: Setting this value to True will overwrite any existing data in the database. It will do this without any further prompts.

DatabaseScreen

This screen defines the database type and optionally the parameters needed to access certain database types.

Note: The interactive install provides an "Advanced" dialog to define the instance name and domain of a Microsoft SQL server, but because the unattended install does not support dialogs these arguments are included in the DatabaseScreen settings below.

<table>
<thead>
<tr>
<th>Property</th>
<th>Possible Values</th>
<th>Default Value</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>DatabaseScreen.DatabaseType=<value></td>
<td>Embedded, Microsoft SQL Server, Oracle</td>
<td>Microsoft SQL Server</td>
<td></td>
</tr>
<tr>
<td>DatabaseScreen.Hostname=<value></td>
<td>The name or IP address of the database host, Current host name</td>
<td>Current host name</td>
<td></td>
</tr>
<tr>
<td>DatabaseScreen.DatabaseName=<value></td>
<td>Any string, dsm</td>
<td>dsm</td>
<td>Not required for embedded</td>
</tr>
<tr>
<td>DatabaseScreen.Transport=<value></td>
<td>Named Pipes, TCP</td>
<td>Named Pipes, TCP</td>
<td>Required for SQL Server only</td>
</tr>
<tr>
<td>DatabaseScreen.Username=<value></td>
<td></td>
<td></td>
<td>Not required for Embedded</td>
</tr>
<tr>
<td>DatabaseScreen.Password=<value></td>
<td>blank</td>
<td>blank</td>
<td>Not required for Embedded</td>
</tr>
<tr>
<td>DatabaseScreen.SQLServer.Instance=<value></td>
<td></td>
<td>Blank implies default instance. Optional, required for SQL Server only</td>
<td></td>
</tr>
<tr>
<td>DatabaseScreen.SQLServer.Domain=<value></td>
<td></td>
<td>Optional, required for SQL Server only</td>
<td></td>
</tr>
<tr>
<td>DatabaseScreen.SQLServer.UseDefaultCollation=<value></td>
<td>True, False</td>
<td>False</td>
<td>Optional, required for SQL Server only</td>
</tr>
</tbody>
</table>

AddressAndPortsScreen

This screen defines the hostname, URL, or IP address of this computer and defines ports for the Manager. In the interactive installer this screen also supports the addition of a new Manager to an existing database, but this option is not supported in the unattended install.

<table>
<thead>
<tr>
<th>Property</th>
<th>Possible Values</th>
<th>Default Value</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>AddressAndPortsScreen.ManagerAddress=<value></td>
<td><hostname, URL or IP address of the</td>
<td><current host name></td>
<td></td>
</tr>
</tbody>
</table>
AddressAndPortsScreen

<table>
<thead>
<tr>
<th>Property</th>
<th>Possible Values</th>
<th>Default Value</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>AddressAndPortsScreen.ManagerHost</td>
<td>Host</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AddressAndPortsScreen.ManagerPort</td>
<td><valid port number></td>
<td>4119</td>
<td></td>
</tr>
<tr>
<td>AddressAndPortsScreen.HeartbeatPort</td>
<td><valid port number></td>
<td>4120</td>
<td></td>
</tr>
<tr>
<td>AddressAndPortsScreen.NewNode</td>
<td>True,False</td>
<td>False</td>
<td>True indicates that the current install is a new node. If the installer finds existing data in the database, it will add this installation as a new node. (Multi-node setup is always a silent install). Note: The "New Node" installation information about the existing database to be provided via the DatabaseScreen properties.</td>
</tr>
</tbody>
</table>

CredentialsScreen

<table>
<thead>
<tr>
<th>Property</th>
<th>Possible Values</th>
<th>Default Value</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>CredentialsScreen.UseStrongPasswords</td>
<td>True,False</td>
<td>False</td>
<td>True indicates the DSM should be set up to enforce strong passwords</td>
</tr>
</tbody>
</table>

SecurityUpdateScreen

<table>
<thead>
<tr>
<th>Property</th>
<th>Possible Values</th>
<th>Default Value</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>SecurityUpdateScreen.UpdateComponents</td>
<td>True,False</td>
<td>True</td>
<td>True indicates that you want Deep Security Manager to automatically retrieve the latest Components</td>
</tr>
<tr>
<td>SecurityUpdateScreen.UpdateSoftware</td>
<td>True,False</td>
<td>True</td>
<td>True indicates that you want to setup a task to automatically check for new software.</td>
</tr>
</tbody>
</table>

SmartProtectionNetworkScreen

This screen defines whether you want to enable Trend Micro Smart Feedback and optionally your industry.

<table>
<thead>
<tr>
<th>Property</th>
<th>Possible Values</th>
<th>Default Value</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>SmartProtectionNetworkScreen.EnableFeedback</td>
<td>True,False</td>
<td>False</td>
<td>True enables Trend Micro Smart Feedback.</td>
</tr>
<tr>
<td>SmartProtectionNetworkScreen.IndustryType</td>
<td>Not specified Banking Communications and media Education Energy Fast-moving consumer goods (FMCG) Financial Food and beverage Government Healthcare Insurance</td>
<td>blank</td>
<td>blank corresponds to Not specified</td>
</tr>
</tbody>
</table>
Sample Properties Files

The following is an example of the content of a typical properties file:

```plaintext
AddressAndPortsScreen.ManagerAddress=10.201.111.91
AddressAndPortsScreen.NewNode=True
UpgradeVerificationScreen.Overwrite=False
LicenseScreen.License.-1=XY-ABCD-ABCDE-ABCDE-ABCDE-ABCDE-ABCDE
DatabaseScreen.DatabaseType=Oracle
DatabaseScreen.Hostname=10.201.xxx.xxx
DatabaseScreen.Transport=TCP
DatabaseScreen.DatabaseName=XE
DatabaseScreen.Username=DSM
DatabaseScreen.Password=xxxxxxx
AddressAndPortsScreen.ManagerPort=4119
AddressAndPortsScreen.HeartbeatPort=4120
CredentialsScreen.Administrator.Username=masteradmin
CredentialsScreen.Administrator.Password=xxxxxxxx
CredentialsScreen.UseStrongPasswords=False
SecurityUpdateScreen.UpdateComponents=True
SecurityUpdateScreen.UpdateSoftware=True
RelayScreen.Install=True
SmartProtectionNetworkScreen.EnableFeedback=False
```

Installation Output

The following is a sample output from a successful install, followed by an example output from a failed install (invalid license). The [Error] tag in the trace indicates a failure.

Successful Install

```
Stopping Trend Micro Deep Security Manager Service...
Detecting previous versions of Trend Micro Deep Security Manager...
Upgrade Verification Screen settings accepted...
Database Screen settings accepted...
License Screen settings accepted...
Address And Ports Screen settings accepted...
```
Credentials Screen settings accepted...
All settings accepted, ready to execute...
Uninstalling previous version
Stopping Services
Extracting files...
Setting Up...
Connecting to the Database...
Creating the Database Schema...
Updating the Database Data...
Creating MasterAdmin Account...
Recording Settings...
Creating Temporary Directory...
Installing Reports...
Creating Help System...
Setting Default Password Policy...
Importing Example Security Profiles...
Applying Security Update...
Assigning IPS Filters to Example Security Profiles...
Correcting the Port for the Manager Security Profile...
Correcting the Port List for the Manager...
Creating IP List to Ignore...
Creating Help System...
Creating Scheduled Tasks...
Creating Asset Importance Entries...
Creating Auditor Role...
Auditing...
Optimizing...
Recording Installation...
Creating Properties File...
Creating Shortcut...
Configuring SSL...
Configuring Service...
Configuring Java Security...
Configuring Java Logging...
Cleaning Up...
Starting Deep Security Manager...
Finishing installation...

Failed Install

This example shows the output generated when the properties file contained an invalid license string:

Stopping Trend Micro Deep Security Manager Service...
Detecting previous versions of Trend Micro Deep Security Manager...
Upgrade Verification Screen settings accepted...
Database Screen settings accepted...
Database Options Screen settings accepted...
[ERROR] The license code you have entered is invalid.
[ERROR] License Screen settings rejected...
Rolling back changes...
Installing the Deep Security Agent

This section describes how to install and activate Deep Security Agents and how to enable Relay functionality (if required).

Importing Agent Software

A Deep Security Agent is initially installed with core functionality only. It is only when a Protection Module is enabled on an Agent that the plug-ins required for that module are downloaded and installed. For this reason, Agent software packages must be imported into Deep Security Manager before you install the Agent on a computer. (A second reason for importing the Agent to Deep Security Manager is for the convenience of being able to easily extract the Agent installer from it using the Deep Security Manager's UI.)

To import Agent software packages to Deep Security:

1. In Deep Security Manager, go to Administration > Updates > Software > Download Center. The Download Center page displays the latest versions all Agent software available from Trend Micro.
2. Select your Agent software package from the list and click Import in the menu bar. Deep Security will begin to download the software from the Trend Micro Download Center to the Deep Security Manager.
3. When the software has finished downloading, a green check mark will appear in the Imported column for that Agent.

To export the Agent installer:

1. In Deep Security Manager, go to Administration > Updates > Software > Local.
2. Select your Agent from the list and select Export > Export Installer... from the menu bar.
If you have older versions of the Agent for the same platform, the latest version of the software will have a green check mark in the Is Latest column.

3. Save the Agent installer to a local folder.

Note: Only use the exported Agent installer package (the .msi or the .rpm file) on its own to install the Deep Security Agent. If you extract the full Agent zip package and then run the Agent installer from the same folder that holds the other zipped Agent components, all the Security Modules and the Relay Module will be installed (but not turned on). If you use the core Agent installer, individual Modules will be downloaded from Deep Security Manager and installed on an as-needed basis, minimizing the impact on the local computer.

Installing the Windows Agent

1. Copy the Agent installer file to the target machine and double-click the installation file to run the installer package. At the Welcome screen, click Next to begin the installation.

2. End-User License Agreement: If you agree to the terms of the license agreement, select I accept the terms of the license agreement and click Next.
3. **Destination Folder**: Select the location where you would like Deep Security Agent to be installed and click **Next**.

4. **Ready to install Trend Micro Deep Security Agent**: Click **Install** to proceed with the installation.
5. **Completed:** when the installation has completed successfully, click **Finish**.

The Deep Security Agent is now installed and running on this computer, and will start every time the machine boots.

Note: During an install, network interfaces will be suspended for a few seconds before being restored. If you are using DHCP, a new request will be generated, potentially resulting in a new IP address for the restored connection.

Note: Installing the Deep Security Agent over Windows Remote Desktop is NOT recommended because of the temporary loss of connectivity during the install process. However, using the following command line switch when starting Remote Desktop will allow the install program to continue on the server after the connection is lost. On Windows Server 2008 or Windows Vista SP1 and later or Windows XP SP3 and later, use:

```
mstsc.exe /admin
```

On earlier versions of Windows, use:
Installing the Red Hat, SuSE, or Oracle Linux Agent

Note: The following instructions apply to Red Hat, SuSE, and Oracle Linux. To install on SuSE or Oracle Linux, substitute the SuSE or Oracle Linux RPM name in place of Red Hat.

Note: You must be logged on as "root" to install the Agent. Alternatively, you can use "sudo".

1. Copy the installation file to the target machine.
2. Use "rpm -i" to install the ds_agent package:

   ```
   # rpm -i <package name>
   Preparing... ########################################## [100%]
   1:ds_agent ########################################## [100%]
   Loading ds_filter_im module version ELx.x [ OK ]
   Starting ds_agent: [ OK ]
   ```

 (Use "rpm -U" to upgrade from a previous install. This approach will preserve your profile settings)
3. The Deep Security Agent will start automatically upon installation.

Installing the Ubuntu Agent

To install on Ubuntu, copy the installation file to the target machine and use the following command:

```sh
sudo dpkg -i <driver_deb_pkg>
```

where `<driver_deb_pkg>` is the Debian package with the driver that was built and placed in the `<DS>/src/dsa/agent/deb/` directory.

Starting, stopping and resetting the Agent on Linux:

Command-line options:

To start the Agent:

```
/etc/init.d/ds_agent start
```

To stop the Agent:

```
/etc/init.d/ds_agent stop
```

To reset the Agent:

```
/etc/init.d/ds_agent reset
```

To restart the Agent:
Using Deployment Scripts to Install Agents

Adding a computer to your list of protected resources in Deep Security and implementing protection is a multi-step process. Most of these steps can be performed locally from the command line on the computer and can therefore be scripted. The Deep Security Manager’s Deployment Script Generator can be accessed from the Manager's Help menu.

To generate a deployment script:

1. Start the Deployment Script generator by clicking Generate Deployment Scripts... from the Deep Security Manager's Help menu (at the top right of the Deep Security Manager window).
2. Select the platform to which you are deploying the software.

 \[Note:\] Platforms listed in the drop-down menu will correspond to the software that you have imported into the Deep Security Manager.

3. Select Activate the Agent Automatically. (Optional, but Agents must be activated by the Deep Security Manager before a protection Policy can be implemented.)
4. Select the Policy you wish to implement on the computer (optional)
5. Select the computer Group (optional)
6. Select the Relay Group (optional)

As you make the above selections, the Deployment Script Generator will generate a script which you can import into your deployment tool of choice.

\[Note:\] The Deployment Script Generator can also be started from the menu bar on the Administration > Updates > Software > Local page.

\[Note:\] The deployment scripts generated by Deep Security Manager for Windows Agents must be run in Windows Powershell version 2.0 or later.

\[Note:\] On windows machines, the deployment script will use the same proxy settings as the local operating system. If the local operating system is configured to use a proxy and the Deep Security Manager is accessible only through a direct connection, the deployment script will fail.
Iptables on Linux

By default, iptables is disabled when the Deep Security Agent is installed and the ds_filter service starts for the first time. Iptables remains disabled (whether or not the Agent is running) until the Agent is uninstalled at which point iptables is re-enabled (if it was enabled initially).

To run the Deep Security Agent without affecting iptables, create the following empty file:

/etc/use_dsa_with_iptables

If the Deep Security Agent detects the presence of the file, iptables will not be affected when the ds_filter service starts.

For SuSE 11, on the target machine before beginning the installation procedure:

in:

/etc/init.d/jexec

after

Required-Start: $local_fs

add the line:

Required-Stop:

Activating the Agent

The Agent must be activated from the Deep Security Manager before it can be configured to act as a Relay or to protect the host computer.

To activate the newly installed Agent:

1. In the Deep Security Manager, go to the Computers page and click New > New Computer... to display the New Computer Wizard.
2. Enter the hostname or IP address of the computer. If you want to use the Agent to provide protection for the host computer as well as function as a Relay, select a Deep Security Policy from the Policy menu. Otherwise leave Policy set to "None".

3. The wizard will confirm that it will activate the Agent on the computer and apply a Security Policy (if one was selected).
4. On the final screen, de-select "Open Computer Details on 'Close'" and click Close.

5. The Agent is now activated. In the Deep Security Manager, go to the Computers screen and check the computer's status. It should display "Managed (Online)".
Enabling Relay Functionality

Any activated 64-bit Windows or Linux Agent can be configured to act as a Relay, downloading and distributing Security and Software Updates.

Note: Once enabled on an Agent, a Relay cannot be disabled.

To enable Relay functionality:

1. In the Deep Security Manager, go to the **Computers** page, double-click the computer with the newly-activated Agent to display its **Details** editor window.

2. In the computer editor, go to the **Overview** > **Actions** > **Software** area and click **Enable Relay**. Click **Close** close the editor window.
3. In the Deep Security Manager on the Computers page, the computer’s icon will change from ordinary computer () to computer with Relay-enabled Agent (). Click the Preview icon to display the Preview Pane where you can see the number of Update components the Relay Module is ready to distribute.
Installing and Configuring a Relay-enabled Agent

The Deep Security Relay is a Deep Security Agent with Relay functionality enabled. Relays download and distribute Security and Software Updates to your Deep Security Agents and Appliances. You must have at least one Deep Security Relay to keep your protection up to date.

Install and Activate a Deep Security Agent

If you do not already have an agent installed on a computer, do so by following the instructions in Deploying Agent-based Protection (page 43). You skip ahead to the section on "Manual Installation".

Once the Agent is installed, you need to Activate it.

To Activate the Agent,

1. In the Deep Security Manager, go to the Computers page.
2. In the menu bar, click New > New Computer... to display the New Computer Wizard.
3. For Hostname, enter the hostname or IP address of the computer on which you just installed the Agent.
4. For Policy, select a Policy based on the operating system of your computer.
5. For Download Security Updates From, leave the default setting (Default Relay Group).
6. Click Finish. Deep Security Manager will import the computer to its Computers page and activate the Agent.

Enable Relay Functionality on a Deep Security Agent

To enable Relay functionality on an installed Deep Security Agent:

1. The Adding a new computer and activation process should have finished by opening the Computer's Editor window. If it hasn’t, follow step two (below) to open the window.
2. In the Deep Security Manager, go to the Computers screen, find the Agent on which you want to enable Relay functionality and double-click it to open its Computer Editor window.
3. In the Computer Editor window, go to Overview > Actions > Software and click Enable Relay.

Note: If you do not see the Enable Relay button, go to Administration > Updates > Software > Local to check whether the corresponding package has been imported. Also, if you are using a virtual machine, ensure that it is a 64-bit version.

Deep Security Manager will install the plug-ins required by the Relay Module, and the Agent will begin to function as a Deep Security Relay.

Note: If you are running Windows Firewall or iptables, you also need to add a Firewall Rule that allows TCP/IP traffic on port 4122 on the Relay.

Note: Relays are organized into Relay Groups. New Relays are automatically assigned to the Default Relay Group. The Default Relay Group is configured to retrieve Security and Software Updates from
the Primary Security Update Source defined in the Deep Security Manager on the Administration > System Settings > Updates tab.
Configure Amazon EC2 Resources for Integration with Deep Security

Before Amazon EC2 resources can be added to a Deep Security Manager as a "Cloud Account", you must generate an Amazon **Access Key** and a **Secret Key** for those resources that a Deep Security User will use when importing the resources to the Deep Security Manager. Then must assign minimum permissions to the User account.

To create an Access Key and Secret Key for Deep Security Manager and assign minimum permissions:

1. Go to your Amazon **Web Services** console and sign in
2. Open the **IAM** section (If you do not have privileges to use the IAM section, contact the account's administrator.)
3. Go to **Users** and click **Create New User**
4. Enter an account name, for example "deep_security"
5. Copy the generated **Access Key Id** and **Secret Key Id**
6. Select the **User** and choose **Permissions**
7. Here, you can grant the permissions either at the **Role** or at the **User** level. The minimum required permission is "**ec2:Describe*"**, however you can use the "**Read Only Access**" policy template for simplicity

Note: Having a dedicated account for Deep Security ensures that you can refine the rights and permissions or revoke the account at any time. Trend Micro recommends that you give Deep Security a Access/Secret key with no more than **read-only** permissions.

The following policy template will grant the required permissions:

```
{
  "Statement": [{
    "Sid": "Stmt1354546872297",
    "Action": [
      "ec2:Describe*
    ],
    "Effect": "Allow",
    "Resource": [ "*" ]
  }]
}
```
Configure VMware vCloud for Integration with Deep Security

VMware vCloud integration allows Tenants in a Multi-Tenancy installation to import vCloud Organizations as Cloud Accounts and apply agentless Deep Security protection to them. The primary Tenant adds the vCenter hosting the VMs to their Deep Security Manager and then deploys and manages the Deep Security Virtual Appliance.

To enable vCloud integration, you must assign a minimum set of rights to the user accounts Tenants will use to import their vCloud "Cloud Accounts" and you must configure the vCenter database to assign unique UUIDs to new virtual machines.

Creating a Minimum Rights Role for vCloud Account Tenant Users

The User accounts you create in vCloud director that the Deep Security Tenants will use to add their Cloud Accounts to their Deep Security Manager require only the All Rights > General > Administrator View right.

To create a minimum rights role:

1. Log in to vCloud Director.
2. In the System tab, click on Administration.
3. In the navigation panel on the left, click on Roles.
4. Click the "plus" sign to create a new Role (for example, "DS_User").
5. Select the Administrator View right in the All Rights > General folder:

![Role Creation Interface]

6. Click Ok.

You can now assign this Role to the user accounts you will give to Deep Security Users to import their vCloud resources into the Deep Security Manager.
When providing a Deep Security User with their credentials, you must include the IP address of the vCloud Organization and instruct them that when importing the vCloud resources into their Deep Security Manager, their username must include "@orgName". For example if the vCloud account's username is kevin and the vCloud Organization you've given the account access to is called CloudOrgOne, then the Deep Security User must enter kevin@CloudOrgOne as their username when importing the vCloud resources.

Configuring the vCenter Database to Assign Unique UUIDs to New Virtual Machines

Deep Security requires that all protected virtual machines have unique UUIDs. Virtual Machines created from a vApp template can be assigned duplicate UUIDs which can cause problems. However, you can configure your database to assign unique UUIDs to these VMs created from a template.

To configure the database to assign unique UUIDs to new virtual machines that are created from a template, you must set the CONFIG table of the database, with the parameter backend.cloneBiosUuidOnVmCopy, to 0.

To set this parameter in Oracle, launch Oracle Enterprise Manager and run the following commands:

```sql
set feedback on echo on
set linesize 120
update "VCloud"."CONFIG" set VALUE = '0' where NAME='backend.cloneBiosUuidOnVmCopy';
commit;
select * from "VCloud"."CONFIG" where VALUE = '0' and NAME='backend.cloneBiosUuidOnVmCopy';
```

To set this parameter in Microsoft SQL Server, launch SQL Management Studio and run the following commands:

```sql
USE vcloud
GO update CONFIG set value = '0' where name='backend.cloneBiosUuidOnVmCopy'
commit;
select * from config where value = 0 and name='backend.cloneBiosUuidOnVmCopy';
```

When the parameter has been set, restart all cells in vCloud Director.

Note: This change does not affect previously existing virtual machines.

Enabling the OVF Environment Transport for VMware Tools on your guest VMs

Enabling the OVF Environment Transport for VMware Tools on your guest VMs will expose the guestInfo.ovfEnv environment variable making it easier for Agents to uniquely identify their VMs to the Deep Security Manager. This will reduce the risk of VM misidentification.

To enable the OVF Environment Transport for VMware Tools on a guest VM:

1. In vCloud Director, open the VM's Properties screen, go to the Guest OS Customization tab and select the Enable guest customization checkbox. Click OK.
2. In vCenter, select the same VM, open its Properties screen, go to the Options tab.
3. Click vApp Options and select the Enabled radio button. OVF Settings will now be exposed.
4. In OVF Settings, select the VMware Tools checkbox in the OVF Environment Transport area. Click OK.

If your VM is running, it must be restarted for the changes to take effect.

The data used by Deep Security are taken from the following properties: `vmware.guestinfo.ovfenv.vcenterid` and `vmware.guestinfo.ovfenv.vcloud.computername`.
Installing the Deep Security Notifier

The Deep Security Notifier is a utility for physical or virtual Windows machines which provides local notification when malware is detected or malicious URLs are blocked. The Deep Security Notifier is automatically installed as part of the Deep Security Agent or Relay installation on Windows machines. The stand-alone installation described here is intended for use on Agentless Windows VMs being protected by the Deep Security Virtual Appliance.

Copy the Installation Package

Copy the installation file to the target machine.

Installing the Deep Security Notifier for Windows

| Note: | Remember that you must have administrator privileges to install and run the Deep Security Notifier on Windows machines. |

1. Double-click the installation file to run the installer package. Click Next to begin the installation.
2. Read the license agreement and click Next.
3. Click Install to proceed with the installation.
4. Click Finish to complete the installation.

The Deep Security Notifier is now installed and running on this computer, and the Notifier icon appears in the Windows System Tray. The Notifier will automatically provide pop-up notifications when malware is detected or a URL has been blocked. (You can manually disable notifications by double-clicking the tray icon to open the Notifier status and configuration window).

| Note: | On VMs protected by a Virtual Appliance, the Anti-Malware module must be licensed and enabled on the VM for the Deep Security Notifier to display information. |
Quick Start
Quick Start: System Configuration

This Quickstart Guide describes the initial basic Deep Security system configuration that is required before you can start protecting your computer resources.

To complete basic Deep Security system configuration, you will need to:

1. Make sure your Relay-enabled Agent is operational
2. Configure Deep Security’s ability to retrieve Updates from Trend Micro
3. Check that you have a Scheduled Task to perform regular Updates
4. Set up email notification of important events

Make sure your Relay-enabled Agent is operational

Note: The Relay is responsible for retrieving Security Updates from Trend Micro and distributing them to your protected computers. If you did not install a co-located Relay-enabled Agent during the installation of the Deep Security Manager, you need to install a Relay-enabled Agent before proceeding. (See Installing and Configuring a Relay-enabled Agent (page 54).)

Start the Deep Security Manager management console and navigate to the **Computers** page. Your Relay-enabled Agent should appear on the **Computers** list identified by a "computer" icon with a Relay badge on it. Its status column should display "Managed (Online)".

Relays are always organized into Relay Groups, even if it's only the one "Default Relay Group" to which all new Relays are assigned. You can create multiple Relay Groups if you have a large number of computers and want to create a hierarchical Relay structure or if your computers are spread out over large geographical areas. For more information on Relay Groups, see Relay Groups in the online help.

To view your Deep Security Relays, go to the **Administration > Updates > Relay Groups**.

This will display your current Relay Groups on the Relay Groups page. Usually you will only have the single **Default Relay Group**.

Double-click the Default Relay Group to display its Relay Group Properties window:
In the Members area of the **Relay Group Properties** window you'll see the Relays that are members of the group.

Note: If there are no computers in the Members area see *Configuring the Deep Security Relay* in the Installation Guide.

Configure Deep Security's ability to retrieve Updates from Trend Micro

Now that you've confirmed that you have a Relay, you can find the Relay in your Computers list and check that it can retrieve updates from Trend Micro.

Go to the Administration > Updates > Security tab and click the Check For Updates and Download... button under Pattern Updates.

This will display the **Download Patterns** Wizard which contacts the Trend Micro Update Servers and downloads the latest Anti-Malware Pattern Updates and distributes them to your computers. (This is the default behavior. You can configure the automatic distribution of Security Updates on the Administration > System Settings > Updates tab.) If upon completion the wizard displays the success message it means your Relay-enabled Agent can communicate with the Update servers:
Check that you have a Scheduled Task to perform regular Updates

Now that you know your Relay can communicate with the Update servers, you should create a Scheduled Task which will regularly retrieve and distribute security Updates.

Go to Administration > Scheduled Tasks. There you should see at least one Scheduled Task called Default Check for Security Updates Task:

Double-click the Scheduled Task to view its Properties window:

Notice that (in this case) the Daily Download Security Updates Task is set to perform a Security Update every day at 12:55.

Note: If you don't have a Daily Download Security Updates Task Scheduled Task in your list, you can create one by clicking on New on the Scheduled Task page menu bar and following the instructions in the New Scheduled Task wizard.
Updates Configuration in the System Settings

To configure the finer details of Update behavior, in the Deep Security Manager, go to the **Updates** tab in **Administration > System Settings**.

In the **Security Updates** area you can configure the following options (although the default settings are recommended):

- **Primary Update Source**: this is the source that the Relays in all Relay Groups go to for Deep Security Rule and Pattern Updates which they can then distribute to Agents and Virtual Appliances. (Only change this if you have been instructed to do so by your support provider.)

- **Patterns**: Patterns are used by the Anti-malware Module. The default settings permits Agents and Virtual Appliances to download Pattern Updates directly from the Primary Security Update Source (above) if for some reason they cannot contact a Relay or the Deep Security Manager. (For example because of local connectivity issues, or if the computer is a roaming laptop.)

- **Rules**: Updates to the Deep Security Rules used by the Firewall, Intrusion Prevention, Log Inspection, and Integrity Monitoring Protection Modules must be integrated into Policies at the Deep Security Manager level before they can be sent out to Agents and Virtual Appliances. This setting (on by default) automatically integrates Rule Updates with the Policies in the Deep Security Manager.

 Note: In each Security Policy, there is a further setting (also on by default) to automatically update computers when there has been a change to the Security Policy that is in use. This setting is found in the Policy/Computer Editor (the **Details** window) in **Settings > Computer > Send Policy Changes Immediately**.

- **Relays**: The two settings under Relays determine if Deep Security will import updates for older 9.0 and earlier versions of the Agents and Appliances. Security Update architecture has changed substantially since 9.0 and the formats of the Updates for 9.0 and 9.5 are different. Do not download Updates for older Agents if you do not them as this would consume unnecessary bandwidth and storage space. Similarly, only download Patterns for all "Regions" (determined by language) if you have Agents or
Appliances running in multiple Regions. Leaving this option unchecked will distribute only the package designed for the Region in which your Deep Security Manager is installed.

In the **Software Updates** area you can configure the following options (although the default settings are recommended):

- **Trend Micro Download Center:** By default, Deep Security will "Automatically download updates to imported software." Trend Micro will periodically issue updated builds of already released Agent and Appliance software. Setting this option will automatically download updates to any software that you have already imported to Deep Security (visible on the Administration > Updates > Software > Local page) from the Trend Micro Download Center (the software available from the Trend Micro Download Center can be see on the Administration > Updates > Software > Download Center page.)

 Note: The installation of the software once it has been downloaded must be initiated manually. This last step cannot be automated.

In the **Virtual Appliance Version Control** section, you can control the versions of the Protection Modules are installed on a newly activated Virtual Appliance. The Deep Security Virtual Appliance is shipped with basic versions of the Protection Module plug-ins. The Appliance relies on the plug-ins that are shipped with the 64-bit Red Hat Agent software package for Updates. By default, the Appliance will use the latest version of the Red Hat package that has been imported to Deep Security (on the Updates > Software > Local page.) However you may wish to control over the version of the Protection Modules get installed and you can do using this setting.

 Note: For more information about the configuration options available on this page, see the associated online help for it in the Deep Security Manager.

Set up email notification of important events

Deep Security Alerts are raised when situations occur that require special attention. Alerts can be raised due to security Events such as the detection of malware or an abnormal restart on a protected computer, or they can be system events like the Deep Security Manager running low on disk space. Deep Security can be configured to send email notifications when specific Alerts are raised.

To configure which Alerts will generate an email notification, go to the Alerts page and click **Configure Alerts...** to display the list of Deep Security Alerts:
Double-click on an Alert see its **Properties** window where you can set the Alert options for email notification:

Now you need to configure your User account to receive the email notifications Deep Security will send out. Go to **Administration > User Management > Users** and double-click on your User account to display its **Properties** window. Go to the **Contact Information** tab and enter an email address and select the **Receive Alert Emails** option:
In order for Deep Security to send email notification it has to be able to communicate with an SMTP server (access to an SMTP server is a requirement for email notifications). To connect the Deep Security Manager to your SMTP server, go to the Administration > System Settings > SMTP tab:

Complete the required fields in the SMTP area press test SMTP Settings at the bottom of the page when you're done. you should see a Test connection to SMTP server succeeded message:
Basic Configuration is complete

This completes the basic Deep Security system configuration. Deep Security is now configured to regularly contact Trend Micro for security Updates and distribute those Updates on regular basis, and it will send you email notifications when Alerts are raised. Now you need to apply Deep Security protection to your computers. See *QuickStart: Protecting a Computer (page 70)* or *Protecting a Mobile Laptop (page 0)* for a quick guide to protecting those two types of computer resources.
Quick Start: Protecting a Computer

The following describes how to use Deep Security to protect a Windows Server 2008 computer.

It will involve the following steps:

1. Adding the computer to the Deep Security Manager.
2. Configuring and running a Recommendation Scan
3. Automatically implementing scan recommendations
4. Create a Scheduled Task to perform regular Recommendation Scans
5. Monitoring Activity Using the Deep Security Manager

Note: We will assume that you have already installed the Deep Security Manager on the computer from which you intend to manage the Deep Security Agents throughout your network. We will also assume that you have installed (but not activated) Deep Security Agent on the computer you wish to protect. And finally, we will assume that you have a Deep Security Relay available from which Deep Security can download the latest Security Updates. If any of these requirements are not in place, consult the Installation Guide for instructions to get to this stage.

Adding the computer to the Deep Security Manager

There are several ways of adding computers to the Deep Security Manager's Computers page. You can add computers by:

- Adding computers individually from a local network by specifying their IP addresses or hostnames
- Discovering computers on a local network by scanning the network
- Connecting to a Microsoft Active Directory and importing a list of computers
- Connecting to a VMware vCenter and importing a list of computers
- Connecting to computing resources from the following Cloud Provider services:
 - Amazon EC2
 - VMware vCloud

For the purposes of this exercise, we will add a computer from a local network but once a computer is added to the Manager, the protection procedures are the same regardless of where the computer is located.

To add a computer from a local network:

1. In the Deep Security Manager console, go to the Computers page and click New in the toolbar and select New Computer... from the drop-down menu.
2. In the **New Computer** wizard, enter the hostname or IP address of the computer and select an appropriate security Policy to apply from the Policy tree in the drop-down menu. (In this case we will select the **Windows Server 2008 Policy**.) Click **Next**.

3. The wizard will contact the computer, add it to the Computers page, detect the unactivated Agent, activate it, and apply the selected Policy. Click **Finish**.

Note: An Agent can be configured to automatically initiate its own activation upon installation. For details, see *Command-Line Utilities* in the Reference section of the online help.

4. When the computer has been added the wizard will display a confirmation message:
5. Deselect the **Open Computer Details on 'Close'** option and click **Close**.

The computer now appears in the Deep Security Manager's list of managed computers on the **Computers** page.

Deep Security will automatically download the latest Security Updates to the computer after activation. As well, the **Windows Server 2008** Policy that was assigned to the computer has Integrity Monitoring enabled and so it will start to Build an Integrity Monitoring baseline for the computer. You can see activities currently being carried out in the status bar of the Manager window:

Once Deep Security Manager has completed its initial post-activation tasks, the computer's **Status** should display as **Managed (Online)**.

Note: More information is available for each page in the Deep Security Manager by clicking the **Help** button in the menu bar.

Configuring and Running a Recommendation Scan

The security Policy that we assigned to the computer is made up of a collection of Rules and settings designed for a computer running the Windows Server 2008 operating system. However, a static Policy can soon fall out of date. This can be because of new software being installed on the computer, new operating system vulnerabilities being discovered for which Trend Micro has created new protection Rules, or even because a previous vulnerability was corrected by an operating system or software service pack. Because of the dynamic nature of the security requirements on a computer, you should regularly run Recommendation Scans which will assess the current state of the computer and compare it against the latest Deep Security protection module updates to see if the current security Policy needs to be updated.

Recommendation Scans make recommendations for the following protection modules:

- **Intrusion Prevention**
To run a Recommendation Scan on your computer:

2. Right-click on your computer and select **Actions > Scan for Recommendations**:

![Deep Security Manager Console](image)

During the Recommendation Scan, your computer's Status will display **Scanning for Recommendations**. When the scan is finished, if Deep Security has any recommendations to make, you will see an Alert on the Alerts screen:

![Scan Results](image)

To see the results of the Recommendation Scan:

1. Open the computer editor for your computer (**Details...** in the **Computers** page menu bar or from the right-click menu.)
2. In the computer editor window, go to the **Intrusion Prevention** module page.

In the **Recommendations** area of the **General** tab, you'll see the results of the scan:
The **Current Status** tells us that there are currently 179 Intrusion Prevention Rules assigned to this computer.

Last Scan for Recommendations tells us that the last scan took place on December 18th, 2012, at 09:14.

Unresolved Recommendations tells us that as a result of the scan, Deep Security recommends assigning an additional 28 Intrusion Prevention Rules and unassigning 111 currently assigned Rules.

The **Note** informs us that 111 of the Rules recommended for unassignment (all of them as it turn out) have been assigned at the Policy level (rather than directly here on the computer level). Rules that have been assigned at a level higher up the Policy tree can only be unassigned in the Policy where they were assigned -- in this case, the Windows Server 2008 Policy. (If we had opened the **Windows Server 2008** Policy editor, we would have seen the same recommendations and we could have unassigned them from there.)

We are also told that 7 of the Rules that are recommended for assignment can't be automatically assigned. Usually these are either Rules that require configuration or Rules that are prone to false positives and whose behavior should be observed in detect-only mode being being enforced in prevent mode. To see which Rules have been recommended for assignment, click **Assign/Unassign...** to display the **IPS Rules** rule assignment modal window. Then select Recommended for Assignment from the second drop-down filter list:
Rules that require configuration are identified by an icon with a small configuration badge (🛠). To see the configurable options for a Rule, double-click the Rule to open its Properties window (in local editing mode) and go to the Configuration tab. To Assign a Rule, select the checkbox next to its name.

To view Rules that are recommended for unassignment, filter the list of Rules by selecting Recommended for Unassignment from the same drop-down list. To unassign a Rule, deselect the checkbox next to its name.

Rules that are in effect on a computer because they have been assigned in a Policy higher up the policy tree can’t be unassigned locally. The only way to unassign such Rules is to edit the Policy where they were originally assigned and unassign them from there. For more information on this kind of Rule inheritance, see Policies, Inheritance and Overrides in the Reference section of the online help.

Automatically implement scan recommendations

You can configure Deep Security to automatically assign and unassign Rules after a Recommendation Scan. To do so, open the computer or Policy editor and go to the individual protection module pages that support Recommendation Scans (Intrusion, Prevention, Integrity Monitoring, and Log Inspection). In the Recommendation area on the General tab, set Automatically implement Intrusion Prevention Recommendations (when possible): to Yes.

Create a Scheduled task to perform regular Recommendation Scans

Performing regular Recommendation Scans ensures that your computers are protected by the latest relevant Rule sets and that those that are no longer required are removed. You can create a Scheduled Task to carry out this task automatically.

To create a Scheduled Task:

1. In the main Deep Security Manager window, go to Administration > Scheduled Tasks
2. In the menu bar, click New to display the New Scheduled Task wizard.
3. Select **Scan Computers for Recommendations** as the scan type and select **Weekly** recurrence. Click **Next**.

4. Select a start time, select every 1 week, and select a day of the week. Click **Next**.

5. When specifying which computers to Scan, select the last option (**Computer**) and select the Windows Server 2008 computer we are protecting. Click **Next**.

6. Type a name for the new Scheduled Task. Leave the **Run task on 'Finish'** unchecked (because we just ran a Recommendation Scan). Click **Finish**.

The new Scheduled task now appears in the list of Scheduled Tasks. It will run once a week to scan your computer and make recommendations for you computer. If you have set **Automatically implement Recommendations** for each of the three protection modules that support it, Deep Security will assign and unassign Rules are required. If Rules are identified that require special attention, an Alert will be raised to notify you.

Schedule Regular Security Updates

If you follow the steps described in **Quick Start: System Configuration (page 62)**, your computer will now be regularly updated with the latest protection from Trend Micro.

Monitor Activity Using the Deep Security Manager

The Dashboard

After the computer has been assigned a Policy and has been running for a while, you will want to review the activity on that computer. The first place to go to review activity is the Dashboard. The Dashboard has many information panels ("widgets") that display different types of information pertaining to the state of the Deep Security Manager and the computers that it is managing.

At the top right of the Dashboard page, click **Add/Remove Widgets** to view the list of widgets available for display.

For now, we will add the following widgets from the **Firewall** section:

- Firewall Activity (Prevented)
- Firewall IP Activity (Prevented)
• Firewall Event History [2x1]

Select the checkbox beside each of the three widgets, and click OK. The widgets will appear on the dashboard. (It may take a bit of time to generate the data.)

• The **Firewall Activity (Prevented)** widget displays a list of the most common reasons for packets to be denied (that is, blocked from reaching a computer by the Agent on that computer) along with the number of packets that were denied. Items in this list will be either types of Packet Rejections or Firewall Rules. Each "reason" is a link to the corresponding logs for that denied packet.

• The **Firewall IP Activity (Prevented)** widget displays a list of the most common source IPs of denied packets. Similar to the **Firewall Activity (Prevented)** widget, each source IP is a link to the corresponding logs.

• The **Firewall Event History [2x1]** widget displays a bar graph indicating how many packets were blocked in the last 24 hour period or seven day period (depending on the view selected). Clicking a bar will display the corresponding logs for the period represented by the bar.

| Note: Note the trend indicators next to the numeric values in the **Firewall Activity (Prevented)** and **Firewall IP Activity (Prevented)** widgets. An upward or downward pointing triangle indicates an overall increase or decrease over the specified time period, and a flat line indicates no significant change. |

Logs of Firewall and Intrusion Prevention Events

Now drill-down to the logs corresponding to the top reason for Denied Packets: in the **Firewall Activity (Prevented)** widget, click the first reason for denied packets (in the picture above, the top reason is "Out of Allowed Policy"). This will take you to the **Firewall Events** page.

The **Firewall Events** page will display all Firewall Events where the **Reason** column entry corresponds to the first reason from the **Firewall Activity (Prevented)** widget ("Out of Allowed Policy"). The logs are filtered to display only those events that occurred during the view period of the Dashboard (Last 24 hours or last seven days). Further information about the **Firewall Events** and **Intrusion Prevention Events** page can be found in the help pages for those pages.

| Note: For the meaning of the different packet rejection reasons, see **Firewall Events** and **Intrusion Prevention Events** in the Reference section of the online help. |

Reports

Often, a higher-level view of the log data is desired, where the information is summarized, and presented in a more easily understood format. The **Reports** fill this Role, allowing you to display detailed summaries on computers, Firewall and Intrusion Prevention Event Logs, Events, Alerts, etc. In the **Reports** page, you can select various options for the report to be generated.

We will generate a **Firewall Report**, which displays a record of Firewall Rule and Firewall Stateful Configuration activity over a configurable date range. Select **Firewall Report** from the Report drop-down. Click **Generate** to launch the report in a new window.

By reviewing scheduled reports that have been emailed by the Deep Security Manager to Users, by logging into the system and consulting the dashboard, by performing detailed investigations by drilling-down to specific logs, and by configuring Alerts to notify Users of critical events, you can remain apprised of the health and status of your network.
Upgrading
Upgrade Multi-Node Deep Security Manager

Upgrading a Multi-node Deep Security manager requires no special preparation.

To upgrade a Multi-node Manager:

1. Run the Deep Security Manager install package on any node.
 The installer will instruct the other nodes to shut down (there is no need to manually shut down the services).
 The installer will upgrade the local Deep Security Manager and update the database.

2. Run the Deep Security Manager installer on the remaining nodes.
 As each node is upgraded, the service will restart and the node will rejoin the network of Deep Security Managers.
Upgrade Deep Security Agents

Note: Deep Security Agents must be of the same version or less than the Deep Security Manager being used to manage it. The Deep Security Manager must always be upgraded before the Deep Security Agents.

Note: When planning the upgrade of your Agents and Relays from 9.0 to 9.5, ensure that your 9.5 Agents are assigned to Relay Groups that contain only 9.5 Relays. You should upgrade all Relays in a Group to 9.5 (or create a new 9.5 Group) before configuring any 9.5 Agents to pull updates from the group.

Deep Security Agents can be upgraded using the Deep Security Manager interface, but the Agent software must first be imported into the Deep Security Manager.

To import Agent software into the Deep Security Manager:

1. In the Deep Security Manager, go to the Administration > Updates > Software Updates tab.
2. At the bottom of the page, click on Open Download Center... to open a browser window to the Trend Micro Download Center web site.
3. Download the Agent software for platforms you require to a location accessible from the server hosting the Deep Security Manager.
4. Close the Download Center browser window.
5. Back in the Deep Security Manager on the Software Updates tab, click Import Software... to start the Import Software wizard.
6. Use the wizard to navigate to the location where you downloaded the Agents and import them into the Deep Security Manager.

The Agent software is now imported into the Deep Security Manager.

To Upgrade Deep Security Agents using the Deep Security Manager:

1. In the Deep Security Manager, go to the Computers screen.
2. Find the computer on which you want to upgrade the Agent.
3. Right-click the computer and select Actions > Upgrade Agent software.
4. The Agent software will be sent to the computer and the Agent software will be upgraded and alerts will be dismissed automatically.

Agent software upgrade is now complete.

Note: You can manually upgrade the Agents locally on a computer. To do this, follow the instructions in Installing the Deep Security Agent (page 43).

Protection Module State after Upgrade

Changes to the 9.5 Deep Security Windows and Linux Agents since version 9.0 mean that, depending on the platform, not all Protection Modules that were enabled on a 9.0 Agent will remain enabled on a 9.5 Agent after upgrading. The following table shows which Modules are affected by an Upgrade:
<table>
<thead>
<tr>
<th>Feature</th>
<th>Windows</th>
<th>Linux</th>
</tr>
</thead>
<tbody>
<tr>
<td>AM</td>
<td>No change</td>
<td>Uninstalled</td>
</tr>
<tr>
<td>IM</td>
<td>Uninstalled</td>
<td>Uninstalled</td>
</tr>
<tr>
<td>WRS/FW/IPS</td>
<td>Uninstalled</td>
<td>Uninstalled</td>
</tr>
<tr>
<td>LI</td>
<td>Uninstalled</td>
<td>Uninstalled</td>
</tr>
</tbody>
</table>

Upgrade a Relay on Linux

You cannot use the command on the Actions menu to update a Relay from 9.0 SP1 to 9.5 on Linux.

To upgrade a 9.0 SP1 Relay to 9.5 on Linux:

2. Import Agent-Core-RedHat_EL6-9.5.2-XXX.zip into Deep Security Manager.
3. Deactivate the Relay that you want to upgrade and then uninstall it.
4. Install Agent-Core-RedHat_EL6-9.5.2-XXX.rpm on the Agent computer.
5. Enable the Relay.

To convert a 9.0 SP1 Relay to a 9.5 Agent on Linux:

2. Import Agent-Core-RedHat_EL6-9.5.2-XXX.zip into Deep Security Manager.
3. Deactivate the Relay that you want to upgrade.
5. Uninstall the Relay.
6. Install Agent-Core-RedHat_EL6-9.5.2-XXX.rpm on the Agent computer.
Upgrade the Deep Security Notifier

Note: Upgrading the Deep Security Notifier is only required on virtual machines being protected Agentlessly by a Deep Security Virtual Appliance. On machines with an in-guest Agent, the Notifier will be upgraded along with the Deep Security Agent.

To upgrade the Deep Security Notifier:

1. Uninstall Deep Security Notifier 8.0 SP2
2. Install Deep Security Notifier 9.0 according to the procedures described in *Installing the Deep Security Notifier (page 60)*.

Note: The Deep Security Notifier must always be the same version as the Deep Security Manager.
Appendices
Deep Security Manager Memory Usage

Configuring the Installer's Maximum Memory Usage

The installer is configured to use 1GB of contiguous memory by default. If the installer fails to run you can try configuring the installer to use less memory.

To configure the amount of RAM available to the installer:

1. Go to the directory where the installer is located.
2. Create a new text file called "Manager-Windows-9.5.xxxx.x64.vmoptions" or "Manager-Linux-9.5.xxxx.x64.vmoptions", depending on your installation platform (where "xxxx.xxx" is the build number of the installer and platform).
3. Edit the file by adding the line: "-Xmx800m" (in this example, 800MB of memory will be made available to the installer.)
4. Save the file and launch the installer.

Configuring the Deep Security Manager's Maximum Memory Usage

The Deep Security Manager default setting for heap memory usage is 4GB. It is possible to change this setting.

To configure the amount of RAM available to the Deep Security Manager:

2. Create a new file. Depending on the platform, give it the following name:
 - **Windows**: "Deep Security Manager.vmoptions".
 - **Linux**: "dsms.vmoptions".
3. Edit the file by adding the line: "-Xmx10g " (in this example, "10g" will make 10GB memory available to the Deep Security Manager.)
4. Save the file and restart the Deep Security Manager.
5. You can verify the new setting by going to Administration > System Information and in the System Details area, expand Manager Node > Memory. The Maximum Memory value should now indicate the new configuration setting.
Deep Security Manager Performance Features

Performance Profiles

Deep Security Manager uses an optimized concurrent job scheduler that considers the impacts of each job on CPU, Database and Agent/Appliances. By default, new installations use the "Aggressive" performance profile which is optimized for a dedicated Manager. If the Deep Security Manager is installed on a system with other resource-intensive software it may be preferable to use the "Standard" performance profile. The performance profile can be changed by navigating to Administration > Manager Nodes. From this screen select a Manager node and open the Properties window. From here the Performance Profile can be changed via the drop-down menu.

The Performance Profile also controls the number of Agent/Appliance-initiated connections that the Manager will accept. The default of each of the performance profiles effectively balances the amount of accepted, delayed and rejected heartbeats.

Low Disk Space Alerts

Low Disk Space on the Database Host

If the Deep Security Manager receives a "disk full" error message from the database, it will start to write events to its own hard drive and will send an email message to all Users informing them of the situation. This behavior is not configurable.

If you are running multiple Manager nodes, the Events will be written to whichever node is handling the Event. (For more information on running multiple nodes, see Multi-Node Manager in the Reference section of the online help or the Administrator's Guide.)

Once the disk space issue on the database has been resolved, the Manager will write the locally stored data to the database.

Low Disk Space on the Manager Host

If the available disk space on the Manager falls below 10%, the Manager generates a Low Disk Space Alert. This Alert is part of the normal Alert system and is configurable like any other. (For more information on Alerts, see Alert Configuration in the Configuration and Management section of the online help or the Administrator's Guide.)

If you are running multiple Manager nodes, the node will be identified in the Alert.

When the Manager's available disk space falls below 5MB, the Manager will send an email message to all Users and the Manager will shut down. The Manager cannot be restarted until the available disk space is greater than 5MB.

You must restart the Manager manually.

If you are running multiple nodes, only the node that has run out of disk space will shut down. The other Manager nodes will continue operating.
Agentless Protection

Scan Caching

Scan Caching improves the efficiency of on-demand scans performed by the Virtual Appliance. It eliminates the unnecessary scanning of identical content across multiple VMs in large VMware deployments.

In addition,

- Integrity Monitoring scan caching speeds up Integrity Monitoring scans by sharing Integrity Monitoring scan results
- Anti-Malware on-demand caching speeds up scans on subsequent cloned/similar VMs
- Anti-Malware Real-time caching speeds up VM boot and application access time
- Concurrent Scan feature allows further overall scan time improvement by allowing multiple VMs to be scanned concurrently

High Availability Environments

If you intend to take advantage of VMware High Availability (HA) capabilities, make sure that the HA environment is established before you begin installing Deep Security. All ESXi hypervisors used for recovery operations must be imported into the Deep Security Manager with their vCenter, they must be "prepared", and a Deep Security Virtual Appliance must be installed on each one. Setting up the environment in this way will ensure that Deep Security protection will remain in effect after a HA recovery operation.

Note: When a Virtual Appliance is deployed in a VMware environment that makes use of the VMware Distributed Resource Scheduler (DRS), it is important that the Appliance does not get vMotioned along with the virtual machines as part of the DRS process. Virtual Appliances must be "pinned" to their particular ESXi server. You must actively change the DRS settings for all the Virtual Appliances to "Manual" or "Disabled" (recommended) so that they will not be vMotioned by the DRS. If a Virtual Appliance (or any virtual machines) is set to "Disabled", vCenter Server does not migrate that virtual machine or provide migration recommendations for it. This is known as "pinning" the virtual machine to its registered host. This is the recommended course of action for Virtual Appliances in a DRS environment. (An alternative is to deploy the Virtual Appliance onto a local store as opposed to a shared store. When the Virtual Appliance is deployed onto a local store it cannot be vMotioned by DRS.) For further information on DRS and pinning virtual machines to a specific ESXi server consult your VMware documentation.

Note: If a virtual machine is vMotioned by HA from an ESXi protected by a DSVA to an ESXi that is not protected by a DSVA, the virtual machine will become unprotected. If the virtual machine is subsequently vMotioned back to the original ESXi, it will not automatically be protected again unless you have created an Event-based Task to activate and protect computers that have been vMotioned to an ESXi with an available DSVA. For more information, see "Event-Based Tasks" in the Deep Security Manager Help.
Enable Multi-Tenancy

To enable Multi-Tenancy:

1. In the Deep Security Manager, go to Administration > System Settings > Advanced and click Enable Multi-Tenancy in the Multi-Tenant Options area to display the Multi-Tenant Configuration wizard.

2. Enter the Activation Code and click Next.

3. Choose a license mode to implement:
 - **Inherit Licensing from Primary Tenant:** Gives all Tenants the same licenses as the Primary Tenant.
 - **Per Tenant Licensing:** In this mode, Tenants themselves enter a license when they sign in for the first time.

4. Click Next to finish enabling Multi-Tenancy in your Deep Security Manager.

Managing Tenants

Once Multi-Tenant mode is enabled, Tenants can be managed from the Tenants page that now appears in the Administration section.

Creating Tenants

To create a new Tenant:

1. Go to the Administration > Tenants page and click New to display the New Tenant wizard.

2. Enter a Tenant Account Name. The account name can be any name except "Primary" which is reserved for the Primary Tenant.

3. Enter an Email Address. The email address is required in order to have a contact point per Tenant. It is also used for two of the three different user account generation methods in the next step.

5. Select a Time Zone. All Tenant-related Events will be shown to the Tenant Users in the time zone of the Tenant account.

6. If your Deep Security installation is using more than one database, you will have the option to let Deep Security automatically select a database server on which to store the new Tenant account ("Automatic -- No Preference") or you can specify a particular server.

| Note: Database servers that are no longer accepting new Tenants will not be included in the drop-down list. The options will not appear if you only have a single database. |

When you have made your selection, click **Next** to continue.

7. Enter a Username for the first User of the new Tenant account.

8. Select one of the three password options:
 - **No Email**: The Tenancy's first User's username and password are defined here and no emails are sent.
 - **Email Confirmation Link**: You set the Tenancy's first User's password. However the account is not active until the User clicks a confirmation link he will receive by email.
 - **Email Generated Password**: This allows the Tenant creator to generate a Tenant without specifying the password. This is most applicable when manually creating accounts for users where the creator does not need access

| Note: All three options are available via the REST API. The confirmation option provides a suitable method for developing public registration. A CAPTCHA is recommended to ensure that the Tenant creator is a human not an automated "bot". The email confirmation ensures that the email provided belongs to the user before they can access the account. |

9. Click **Next** to finish with the wizard and create the Tenant. (It may take from 30 seconds to four minutes to create the new Tenant database and populate it with data and sample Policies.)

Examples of messages sent to Tenants

Email Confirmation Link: Account Confirmation Request

Welcome to Deep Security! To begin using your account, click the following confirmation URL. You can then access the console using your chosen password.

Account Name: AnyCo
Username: admin

Click the following URL to activate your account:
https://managername:4119/SignIn.screen?confirmation=1A16EC7A-D84F-D451-05F6-706095B6F646&tenantAccount=AnyCo&username=admin

Email Generated Password: Account and Username Notification

Welcome to Deep Security! A new account has been created for you. Your password will be generated and provided in a separate email.
Account Name: AnyCo
Username: admin

You can access the Deep Security management console using the following URL:
https://managername:4119/SignIn.screen?tenantAccount=AnyCo&username=admin

Email Generated Password: Password Notification

This is the automatically generated password for your Deep Security account. Your Account Name, Username, and a link to access the Deep Security management console will follow in a separate email.

Password: z3IgRUQ0jaFi

Managing Tenants

The **Tenants** page (Administration > Tenants) displays the list of all Tenants. A Tenant can be in any of the following **States**:

- **Created**: In the progress of being created but not yet active
- **Confirmation Required**: Created, but the activation link in the confirmation email sent to the Tenant User has not yet been clicked. (You can manually override this state.)
- **Active**: Fully online and managed
- **Suspended**: No longer accepting sign ins.
- **Pending Deletion**: Tenants can be deleted, however the process is not immediate. The Tenant can be in the pending deletion state for up to seven days before the database is removed.
- **Database Upgrade Failure**: For Tenants that failed the upgrade path. The Database Upgrade button can be used to resolve this situation

Tenant Properties

Double-click on a Tenant to view the Tenant's **Properties** window.
General

The Locale, Time zone and State of the Tenant can be altered. Be aware that changing the time zone and locale does not affect existing Tenant Users. It will only affect new Users in that Tenancy and Events and other parts of the UI that are not User-specific.

The Database Name indicates the name of the database used by this Tenancy. The server the database is running on can be accessed via the hyperlink.

Modules

The Modules tab provides options for protection module visibility. By default all unlicensed modules are hidden. You can change this by deselecting Always Hide Unlicensed Modules. Alternatively, selected modules can be shown on a per-Tenant basis.

If you select Inherit License from Primary Tenant, all features that you as the Primary Tenant are licensed for will be visible to all Tenants. The selected visibility can be used to tune which modules are visible for which Tenants.

If using the "Per Tenant" licensing by default only the licensed modules for each Tenant will be visible.
If you are evaluating Deep Security in a test environment and want to see what a full Multi-Tenancy installation looks like, you can enable Multi-Tenancy Demo Mode.

When in Demo Mode, the Manager populates its database with simulated Tenants, computers, Events, Alerts, and other data. Initially, seven days worth of data is generated but new data is generated on an ongoing basis to keep the Manager's Dashboard, Reports and Events pages populated with data.

Demo Mode is not intended to be used in a production environment!

Statistics

The statistics tab shows information for the current Tenant including database size, jobs processed, logins, security events and system events. The small graphs show the last 24 hours of activity.

Agent Activation

The Agent Activation tab displays a command-line instruction. that can be run from the Agent install directory of this Tenant's computers which will activate the agent on the computer so that the Tenant can assign Policies and perform other configuration procedures from the Deep Security Manager.
Primary Contact

Deep Security Relays

Each Deep Security Manager must have access to at least one Deep Security Relay, and this includes the Tenants in a Multi-Tenancy Deep Security installation. By default, the Relays in the primary Tenant’s "Default Relay Group" are available to the other Tenants. The setting is found in the primary Tenant’s Deep Security Manager in the Administration > System Settings > Tenants > Multi-Tenant Options area. If this option is disabled, Tenants will have to install and manage their own Deep Security Relays.

The Tenant Account User's View of Deep Security

The Tenant "User experience"

When Multi-tenancy is enabled, the sign-in page has an additional Account Name text field:

Tenants are required to enter their account name in addition to their username and password. The account name allows Tenants to have overlapping usernames. (For example, if multiple Tenants synchronize with the same Active Directory server).

Note: When you (as the Primary Tenant) log in, leave the Account name blank or use "Primary".

When Tenants log in, they have a very similar environment to a fresh install of Deep Security Manager. Some features in the UI are not available to Tenant Users. The following areas are hidden for Tenants:

- Manager Nodes Widget
- Multi-Tenant Widgets
- Administration > System Information
• Administration > Licenses (If Inherit option selected)
• Administration > Manager Nodes
• Administration > Tenants
• Administration > System Settings:
 ◦ Tenant Tab
 ◦ Security Tab > Sign In Message
 ◦ Updates Tab > Setting for Allowing Tenants to use Relays from the Primary Tenant
 ◦ Advanced Tab > Load Balancers
 ◦ Advanced Tab > Pluggable Section

• Some of the help content not applicable to Tenants
• Some reports not applicable to Tenants
• Other features based on the Multi-Tenant Options (discussed later)
• Some Alert Types will also be hidden from Tenants:
 ◦ Heartbeat Server Failed
 ◦ Low Disk Space
 ◦ Manager Offline
 ◦ Manager Time Out Of Sync
 ◦ Newer Version of Deep Security Manager available
 ◦ Number of Computers Exceeds Database Limit
 ◦ And when inherited licensing is enabled any of the license-related alerts

It is also important to note that Tenants cannot see any of the Multi-Tenant features of the primary Tenant or any data from any other Tenant. In addition, certain APIs are restricted since they are only usable with Primary Tenant rights (such as creating other Tenants).

For more information on what is and is not available to Tenant Users, see the online help for the Administration > System Settings > Tenants page in the Deep Security Manager.

All Tenants have the ability to use Role-Based Access Control with multiple user accounts to further sub-divide access. Additionally they can use Active Directory integration for users to delegate the authentication to the domain. The Tenant Account Name is still required for any Tenant authentications.

Agent-Initiated Activation

Agent-initiated activation is enabled by default for all Tenants.

Note: Unlike Agent-initiated activation for the Primary Tenant, a password and Tenant ID are required to invoke the activation for Tenant Users.

Tenants can see the arguments required for agent-initiated activation by clicking the View Imported Software button on the Administration > Updates > Software Updates tab, right-clicking and Agent install package, and selecting Generate Deployment Scripts from the context menu:
As an example, the script for Agent-Initiated Activation on a Windows machine might look as follows:

dsa_control -a dsm://manageraddress:4120/ "tenantID:7156CF5A-D130-29F4-5FE1-8AFD12E0EC02"
"tenantPassword:98785384-3966-B729-1418-3E2A7197D0D5"

Tenant Diagnostics

Tenants are not able to access manager diagnostic packages due to the sensitivity of the data contained within the packages. Tenants can still generate agent diagnostics by opening the Computer Editor and choosing Agent Diagnostics on the Actions tab of the Overview page.

Usage Monitoring

Deep Security Manager records data about Tenant usage. This information is displayed in the Tenant Protection Activity widget on the Dashboard, the Tenant Properties window's Statistics tab, and the Chargeback report. This information can also be accessed through the Status Monitoring REST API which can enabled or disabled by going to Administration > System Settings > Advanced > Status Monitoring API.

This chargeback (or viewback) information can be customized to determine what attributes are included in the record. This configuration is designed to accommodate various charging models that may be required in service provider environments. For enterprises this may be useful to determine the usage by each business unit.

Multi-Tenant Dashboard/Reporting

When Multi-Tenancy is enabled, Primary Tenant Users have access to additional Dashboard widgets for monitoring Tenant activity:
Some examples of Tenant-related widgets:

The same information is available on the Administration > Tenants page (some in optional columns) and on the Statistics tab of a Tenant's Properties window.

This information provides the ability to monitor the usage of the overall system and look for indicators of abnormal activity. For instance if a single Tenant experiences a spike in Security Event Activity they may be under attack.

More information is available in the Chargeback report (in the Events & Reports section). This report details protection hours, the current database sizes, and the number of computers (activated and non-activated) for each Tenant.
Multi-Tenancy (Advanced)

APIs

Deep Security Manager includes a number of REST APIs for:

1. Enabling Multi-Tenancy
2. Managing Tenants
3. Accessing Monitoring Data
4. Accessing Chargeback (Protection Activity) Data
5. Managing Secondary Database Servers

In addition the legacy SOAP API includes a new authenticate method that accepts the Tenant Account Name as a third parameter.

For additional information on the REST APIs please see the REST API documentation.

Upgrade

Upgrade is unchanged from previous versions. The installer is executed and detects and existing installation. It will offer an upgrade option. If upgrade is selected the installer first informs other nodes to shutdown and then begins the process of upgrading.

The primary Tenant is upgraded first, followed by the Tenants in parallel (five at a time). Once the installer finishes, the same installer package should be executed on the rest of the Manager nodes.

In the event of a problem during the upgrade of a Tenant, the Tenant's State (on the Administration > Tenants page) will appear as Database Upgrade Required (offline). The Tenants interface can be used to force the upgrade process. If forcing the upgrade does not work please contact support.

Supporting Tenants

In certain cases it may be required a Primary Tenant to gain access to a Tenant's user interface. The Tenants list and Tenant properties pages provide an option to "Authenticate As" a given Tenant, granting them immediate read-only access.

Users are logged in as a special account on the Tenant using the prefix "support_." For example if Primary Tenant user jdoe logs on as a Tenant an account is created called "support_jdoe" with the "Full Access" role. The user is deleted when the support user times out or signs out of the account.

The Tenant can see this user account created, sign in, sign out and deleted along with any other actions in the System events.

Users in the primary Tenant also have additional diagnostic tools available to them:

1. The Administration > System Information page contains additional information about Tenant memory usage and the state of threads. This may be used directly or helpful to Trend Micro support.
2. The server0.log on the disk of the Manager nodes contains additional information on the name of the Tenant (and the user if applicable) that caused the log. This can be helpful in determining the source of issues.

In some cases Tenants will require custom adjustments not available in the GUI. This usually comes at the request of Trend Micro support. The command line utility to alter these settings accepts the argument:

-Tenantname "account name"

to direct the setting change or other command line action at a specific Tenant. If omitted the action is on the primary Tenant.

Load Balancers

By default, multi-node Manager provides the address of all Manager nodes to all agents and virtual appliances. The agents and virtual appliances use the list of addresses to randomly select a node to contact and continue to try the rest of the list until no nodes can be reached (or are all busy). If it can't reach any nodes it waits until the next heartbeat and tries again. This works very well in environments where the number of Manager nodes is fixed and avoids having to configure a load balancer in front of the Manager nodes for availability and scalability.

In Multi-Tenant environments it may be desirable to add and remove Manager nodes on demand (perhaps using auto-scaling features of cloud environments). In this case adding and removing Managers would cause an update of every agent and virtual appliance in the environment. To avoid this update the load balancer setting can be used.

Load balancers can be configured to use different ports for the different types of traffic, or if the load balancer supports port re-direction it can be used to expose all of the required protocols over port 443 using three load balancers:

In all cases the load balancer should be configured as TCP load balancer (not SSL Terminating) with sticky-sessions. This ensures a given communication exchange will occur directly between Agent/Virtual Appliance and the Manager from start to finish. The next connection may balance to a different node.
Technical Details

Each Tenant database has an overhead of around 100MB of disk space (due to the initial rules, policies and events that populate the system).

Tenant creation takes between 30 seconds and four minutes due to the creation of the schema and the population of the initial data. This ensures each new Tenant has the most up to date configuration and removes the burden of managing database templates (Especially between multiple database servers).
Creating an SSL Authentication Certificate

The Deep Security Manager creates a 10-year self-signed certificate for the connections with Agents/Appliances, Relays, and Users' web browsers. However, for added security, this certificate can be replaced with a certificate from a trusted certificate authority (CA). (Such certificates are maintained after a Deep Security Manager upgrade.)

Once generated, the CA certificate must be imported into the .keystore in the root of the Deep Security Manager installation directory and have an alias of "tomcat". The Deep Security Manager will then use that certificate.

To create your SSL authentication certificate:

1. Go to the Deep Security Manager installation directory (for the purpose of these instructions, we will assume it's "C:\Program Files\Trend Micro\Deep Security Manager") and create a new folder called Backupkeystore
2. Copy .keystore and configuration.properties to the newly created folder Backupkeystore
3. From a command prompt, go to the following location: C:\Program Files\Trend Micro\Deep Security Manager\jre\bin
4. Run the following command which will create a self signed certificate:

 C:\Program Files\Trend Micro\Deep Security Manager\jre\bin>keytool -genkey -alias tomcat -keyalg RSA -dname cn=dsmserver

5. Choose password: changeit

 Note: -dname is the common name of the certificate your CA will sign. Some CAs require a specific name to sign the Certificate Signing Request (CSR). Please consult your CA Admin to see if you have that particular requirement.

6. There is a new keystore file created under the user home directory. If you are logged in as "Administrator", You will see the .keystore file under C:\Documents and Settings\Administrator
7. View the newly generated certificate using the following command:

 C:\Program Files\Trend Micro\Deep Security Manager\jre\bin>keytool -list -v

8. Run the following command to create a CSR for your CA to sign:

 C:\Program Files\Trend Micro\Deep Security Manager\jre\bin>keytool -certreq -keyalg RSA -alias tomcat -file certrequest.csr

9. Send the certrequest.csr to your CA to sign. In return you will get two files. One is a "certificate reply" and the second is the CA certificate itself.
10. Run the following command to import the CA cert in JAVA trusted keystore:

 C:\Program Files\Trend Micro\Deep Security Manager\jre\bin>keytool -import -alias root -trustcacerts -file cacert.crt -keystore "C:\Program Files\Trend Micro\Deep Security Manager\jre\lib\security\cacerts"
11. Run the following command to import the CA certificate in your keystore:

 C:\Program Files\Trend Micro\Deep Security Manager\jre\bin>keytool -import -alias root -trustcacerts -file cacert.crt

 (say yes to warning message)

12. Run the following command to import the certificate reply to your keystore:

 C:\Program Files\Trend Micro\Deep Security Manager\jre\bin>keytool -import -alias tomcat -file certreply.txt

13. Run the following command to view the certificate chain in your keystore:

 C:\Program Files\Trend Micro\Deep Security Manager\jre\bin>keytool -list -v

14. Copy the .keystore file from your user home directory C:\Documents and Settings\Administrator to C:\Program Files\Trend Micro\Deep Security Manager\.

15. Open the configuration.properties file in folder C:\Program Files\Trend Micro\Deep Security Manager. It will look something like:

 keystoreFile=C:\\Program Files\\Trend Micro\\Deep Security Manager\\.keystore
 port=4119
 keystorePass=$1$85ef650a5c40bb0f914993ac1ad855f48216fd0664ed2544bbec680160b2f
 installed=true
 serviceName= Trend Micro Deep Security Manager

16. Replace the password in the following string:

 keystorePass=xxxx

 where "xxxx" is the password you supplied in step five

17. Save and close the file

18. Restart the Deep Security Manager service

19. Connect to the Deep Security Manager with your browser and you will notice that the new SSL certificate is signed by your CA.